Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Specular-to-Diffuse Translation for Multi-View Reconstruction

NotificationsYou must be signed in to change notification settings

wsh312/S2Dnet

Repository files navigation

Specular-to-Diffuse Translation for Multi-View Reconstruction
Shihao Wu 1,Hui Huang 2,Tiziano Portenier 1,Matan Sela 3,Daniel Cohen-Or 4,Ron Kimmel 3, andMatthias Zwicker 5    
1University of Bern,2Shenzhen University,3Technion - Israel Institute of Technology, 4Tel Aviv University,5University of Maryland
European Conference on Computer Vision (ECCV), 2018



Dependencies

Update 10/April/2019: The code has been updated to pytorch 0.4. A single-view synthetic dataset (75 GB) is provided, one can trainpix2pix orcycleGAN on it.

To-do list:

  • Implement a single-view translation network (with multi-scale discriminator, re-convolution and pixel-normalization) and provide a testing script.

Downloading (Dropbox links)

Training example

$ python train_multi_view.py --dataroot ../huge_uni_render_rnn --logroot ./logs/job101CP --name job_submit_101C_re1_pixel --model cycle_gan --no_dropout --loadSize 512 --fineSize 512 --patchSize 256 --which_model_netG unet_512_Re1 --which_model_netD patch_512_256_multi_new --lambda_A 10 --lambda_B 10 --lambda_vgg 5 --norm pixel

Testing

Please refer to "./useful_scripts/evaluation/"

Scripts of SIFT, SMVS, and rendering are in "./useful_scripts/".

Please contact the author for more information about the code and data.

About

Specular-to-Diffuse Translation for Multi-View Reconstruction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp