Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitee40767

Browse files
authored
PyGAD 2.10.0 Documentation
Documentation of pygad.torchga added.
1 parent18d70b6 commitee40767

File tree

6 files changed

+1476
-235
lines changed

6 files changed

+1476
-235
lines changed

‎docs/source/Footer.rst

Lines changed: 104 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
1-
.. _header-n0:
1+
.. _header-n344:
22

33
Release History
44
===============
55

6-
.. _header-n2:
6+
.. _header-n346:
77

88
PyGAD 1.0.17
99
------------
@@ -15,7 +15,7 @@ Release Date: 15 April 2020
1515
values for the solutions. This allows the project to be customized to
1616
any problem by building the right fitness function.
1717

18-
.. _header-n7:
18+
.. _header-n351:
1919

2020
PyGAD 1.0.20
2121
-------------
@@ -35,7 +35,7 @@ Release Date: 4 May 2020
3535
4. The code object ``__code__`` of the passed fitness function is
3636
checked to ensure it has the right number of parameters.
3737

38-
.. _header-n18:
38+
.. _header-n362:
3939

4040
PyGAD 2.0.0
4141
------------
@@ -61,7 +61,7 @@ Release Date: 13 May 2020
6161
is called after each generation. This helps the user to do
6262
post-processing or debugging operations after each generation.
6363

64-
.. _header-n29:
64+
.. _header-n373:
6565

6666
PyGAD 2.1.0
6767
-----------
@@ -97,7 +97,7 @@ Release Date: 14 May 2020
9797

9898
2. Mutation is applied independently for the genes.
9999

100-
.. _header-n44:
100+
.. _header-n388:
101101

102102
PyGAD 2.2.1
103103
-----------
@@ -107,7 +107,7 @@ Release Date: 17 May 2020
107107
1. Adding 2 extra modules (pygad.nn and pygad.gann) for building and
108108
training neural networks with the genetic algorithm.
109109

110-
.. _header-n49:
110+
.. _header-n393:
111111

112112
PyGAD 2.2.2
113113
-----------
@@ -141,7 +141,7 @@ The new gene value is **0.1**.
141141
``crossover_type`` parameters of the pygad.GA class constructor. When
142142
``None``, this means the step is bypassed and has no action.
143143

144-
.. _header-n62:
144+
.. _header-n406:
145145

146146
PyGAD 2.3.0
147147
-----------
@@ -166,7 +166,7 @@ Release date: 1 June 2020
166166
6. The name of the ``pygad.nn.train_network()`` function is changed to
167167
``pygad.nn.train()``.
168168

169-
.. _header-n77:
169+
.. _header-n421:
170170

171171
PyGAD 2.4.0
172172
-----------
@@ -204,7 +204,7 @@ through more generations because no further improvement is possible.
204204
if ga_instance.best_solution()[1]>=70:
205205
return"stop"
206206
207-
.. _header-n87:
207+
.. _header-n431:
208208

209209
PyGAD 2.5.0
210210
-----------
@@ -300,7 +300,7 @@ If the user did not assign the initial population to the
300300
randomly based on the ``gene_space`` parameter. Moreover, the mutation
301301
is applied based on this parameter.
302302

303-
.. _header-n115:
303+
.. _header-n459:
304304

305305
PyGAD 2.6.0
306306
------------
@@ -318,7 +318,7 @@ Release Date: 6 August 2020
318318
``on_fitness``, ``on_parents``, ``on_crossover``, ``on_mutation``,
319319
``on_generation``, and ``on_stop``.
320320

321-
.. _header-n124:
321+
.. _header-n468:
322322

323323
PyGAD 2.7.0
324324
-----------
@@ -377,7 +377,7 @@ parameter or set it to ``"classification"`` (default value). In this
377377
case, the activation function of the last layer can be set to any type
378378
(e.g. softmax).
379379

380-
.. _header-n148:
380+
.. _header-n492:
381381

382382
PyGAD 2.7.1
383383
-----------
@@ -387,7 +387,7 @@ Release Date: 11 September 2020
387387
1. A bug fix when the ``problem_type`` argument is set to
388388
``regression``.
389389

390-
.. _header-n153:
390+
.. _header-n497:
391391

392392
PyGAD 2.7.2
393393
-----------
@@ -397,7 +397,7 @@ Release Date: 14 September 2020
397397
1. Bug fix to support building and training regression neural networks
398398
with multiple outputs.
399399

400-
.. _header-n158:
400+
.. _header-n502:
401401

402402
PyGAD 2.8.0
403403
-----------
@@ -407,7 +407,7 @@ Release Date: 20 September 2020
407407
1. Support of a new module named ``kerasga`` so that the Keras models
408408
can be trained by the genetic algorithm using PyGAD.
409409

410-
.. _header-n163:
410+
.. _header-n507:
411411

412412
PyGAD 2.8.1
413413
-----------
@@ -420,7 +420,7 @@ Release Date: 3 October 2020
420420
Management, Faculty of Engineering, Alexandria University,
421421
Egypt <https://www.linkedin.com/in/hamadakassem>`__.
422422

423-
.. _header-n168:
423+
.. _header-n512:
424424

425425
PyGAD 2.9.0
426426
------------
@@ -448,7 +448,56 @@ Release Date: 06 December 2020
448448
``numpy.int64``, ``numpy.float``, ``numpy.float16``,
449449
``numpy.float32``, or ``numpy.float64``.
450450

451-
.. _header-n303:
451+
.. _header-n525:
452+
453+
PyGAD 2.10.0
454+
------------
455+
456+
Release Date: 03 January 2021
457+
458+
1. Support of adaptive mutation where the mutation rate is determined by
459+
the fitness value of each solution. Read the `Adaptive
460+
Mutation <https://pygad.readthedocs.io/en/latest/README_pygad_ReadTheDocs.html#adaptive-mutation>`__
461+
section for more details. Also, read this paper: `Libelli, S.
462+
Marsili, and P. Alba. "Adaptive mutation in genetic algorithms." Soft
463+
computing 4.2 (2000):
464+
76-80. <https://www.researchgate.net/publication/225642916_Adaptive_mutation_in_genetic_algorithms>`__
465+
466+
2. Before the ``run()`` method completes or exits, the fitness value of
467+
the best solution in the current population is appended to the
468+
``best_solution_fitness`` list attribute. Note that the fitness value
469+
of the best solution in the initial population is already saved at
470+
the beginning of the list. So, the fitness value of the best solution
471+
is saved before the genetic algorithm starts and after it ends.
472+
473+
3. When the parameter ``parent_selection_type`` is set to ``sss``
474+
(steady-state selection), then a warning message is printed if the
475+
value of the ``keep_parents`` parameter is set to 0.
476+
477+
4. More validations to the user input parameters.
478+
479+
5. The default value of the ``mutation_percent_genes`` is set to the
480+
string ``"default"`` rather than the integer 10. This change helps to
481+
know whether the user explicitly passed a value to the
482+
``mutation_percent_genes`` parameter or it is left to its default
483+
one. The ``"default"`` value is later translated into the integer 10.
484+
485+
6. The ``mutation_percent_genes`` parameter is no longer accepting the
486+
value 0. It must be ``>0`` and ``<=100``.
487+
488+
7. The built-in ``warnings`` module is used to show warning messages
489+
rather than just using the ``print()`` function.
490+
491+
8. A new ``bool`` parameter called ``suppress_warnings`` is added to the
492+
constructor of the ``pygad.GA`` class. It allows the user to control
493+
whether the warning messages are printed or not. It defaults to
494+
``False`` which means the messages are printed.
495+
496+
9. A helper method called ``adaptive_mutation_population_fitness()`` is
497+
created to calculate the average fitness value used in adaptive
498+
mutation to filter the solutions.
499+
500+
.. _header-n546:
452501

453502
PyGAD Projects at GitHub
454503
========================
@@ -458,7 +507,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
458507
open-source GitHub projects. A brief note about these projects is given
459508
in the next subsections.
460509

461-
.. _header-n170:
510+
.. _header-n548:
462511

463512
`GeneticAlgorithmPython<https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
464513
--------------------------------------------------------------------------------
@@ -469,7 +518,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
469518
is the first project which is an open-source Python 3 project for
470519
implementing the genetic algorithm based on NumPy.
471520

472-
.. _header-n173:
521+
.. _header-n551:
473522

474523
`NumPyANN<https://github.com/ahmedfgad/NumPyANN>`__
475524
----------------------------------------------------
@@ -483,7 +532,7 @@ neural network without using a training algorithm. Currently, it only
483532
supports classification and later regression will be also supported.
484533
Moreover, only one class is supported per sample.
485534

486-
.. _header-n176:
535+
.. _header-n554:
487536

488537
`NeuralGenetic<https://github.com/ahmedfgad/NeuralGenetic>`__
489538
--------------------------------------------------------------
@@ -496,7 +545,7 @@ projects
496545
`GeneticAlgorithmPython<https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
497546
and `NumPyANN<https://github.com/ahmedfgad/NumPyANN>`__.
498547

499-
.. _header-n179:
548+
.. _header-n557:
500549

501550
`NumPyCNN<https://github.com/ahmedfgad/NumPyCNN>`__
502551
----------------------------------------------------
@@ -508,7 +557,7 @@ convolutional neural networks using NumPy. The purpose of this project
508557
is to only implement the **forward pass** of a convolutional neural
509558
network without using a training algorithm.
510559

511-
.. _header-n182:
560+
.. _header-n560:
512561

513562
`CNNGenetic<https://github.com/ahmedfgad/CNNGenetic>`__
514563
--------------------------------------------------------
@@ -520,19 +569,36 @@ convolutional neural networks using the genetic algorithm. It uses the
520569
`GeneticAlgorithmPython<https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
521570
project for building the genetic algorithm.
522571

523-
.. _header-n325:
572+
.. _header-n563:
524573

525574
`KerasGA<https://github.com/ahmedfgad/KerasGA>`__
526575
--------------------------------------------------
527576

528577
GitHub Link: https://github.com/ahmedfgad/KerasGA
529578

530-
`KerasGA<https://github.com/ahmedfgad/KerasGA>`__ trains Keras models
531-
using the genetic algorithm. It uses the
579+
`KerasGA<https://github.com/ahmedfgad/KerasGA>`__ trains
580+
`Keras<https://keras.io>`__ models using the genetic algorithm. It uses
581+
the
582+
`GeneticAlgorithmPython<https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
583+
project for building the genetic algorithm.
584+
585+
.. _header-n566:
586+
587+
`TorchGA<https://github.com/ahmedfgad/TorchGA>`__
588+
--------------------------------------------------
589+
590+
GitHub Link: https://github.com/ahmedfgad/TorchGA
591+
592+
`TorchGA<https://github.com/ahmedfgad/TorchGA>`__ trains
593+
`PyTorch<https://pytorch.org>`__ models using the genetic algorithm. It
594+
uses the
532595
`GeneticAlgorithmPython<https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
533596
project for building the genetic algorithm.
534597

535-
.. _header-n185:
598+
`pygad.torchga<https://github.com/ahmedfgad/TorchGA>`__:
599+
https://github.com/ahmedfgad/TorchGA
600+
601+
.. _header-n570:
536602

537603
Submitting Issues
538604
=================
@@ -549,7 +615,7 @@ is not working properly or to ask for questions.
549615
If this is not a proper option for you, then check the **Contact Us**
550616
section for more contact details.
551617

552-
.. _header-n189:
618+
.. _header-n574:
553619

554620
Ask for Feature
555621
===============
@@ -566,7 +632,7 @@ to ahmed.f.gad@gmail.com.
566632

567633
Also check the **Contact Us** section for more contact details.
568634

569-
.. _header-n193:
635+
.. _header-n578:
570636

571637
Projects Built using PyGAD
572638
==========================
@@ -585,15 +651,15 @@ Within your message, please send the following details:
585651

586652
- Preferably, a link that directs the readers to your project
587653

588-
.. _header-n204:
654+
.. _header-n589:
589655

590656
For More Information
591657
====================
592658

593659
There are different resources that can be used to get started with the
594660
genetic algorithm and building it in Python.
595661

596-
.. _header-n206:
662+
.. _header-n591:
597663

598664
Tutorial: Implementing Genetic Algorithm in Python
599665
--------------------------------------------------
@@ -617,7 +683,7 @@ good resource to start with coding the genetic algorithm.
617683

618684
|image0|
619685

620-
.. _header-n217:
686+
.. _header-n602:
621687

622688
Tutorial: Introduction to Genetic Algorithm
623689
-------------------------------------------
@@ -636,7 +702,7 @@ which is available at these links:
636702

637703
|image1|
638704

639-
.. _header-n227:
705+
.. _header-n612:
640706

641707
Tutorial: Build Neural Networks in Python
642708
-----------------------------------------
@@ -656,7 +722,7 @@ available at these links:
656722

657723
|image2|
658724

659-
.. _header-n237:
725+
.. _header-n622:
660726

661727
Tutorial: Optimize Neural Networks with Genetic Algorithm
662728
---------------------------------------------------------
@@ -676,7 +742,7 @@ available at these links:
676742

677743
|image3|
678744

679-
.. _header-n247:
745+
.. _header-n632:
680746

681747
Tutorial: Building CNN in Python
682748
--------------------------------
@@ -702,7 +768,7 @@ good resource to start with coding CNNs.
702768

703769
|image4|
704770

705-
.. _header-n260:
771+
.. _header-n645:
706772

707773
Tutorial: Derivation of CNN from FCNN
708774
-------------------------------------
@@ -721,7 +787,7 @@ which is available at these links:
721787

722788
|image5|
723789

724-
.. _header-n270:
790+
.. _header-n655:
725791

726792
Book: Practical Computer Vision Applications Using Deep Learning with CNNs
727793
--------------------------------------------------------------------------
@@ -747,7 +813,7 @@ Find the book at these links:
747813
..figure::https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
748814
:alt:
749815

750-
.. _header-n285:
816+
.. _header-n670:
751817

752818
Contact Us
753819
==========

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp