Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit8c69d34

Browse files
authored
Add files via upload
1 parentc858f27 commit8c69d34

File tree

2 files changed

+113
-101
lines changed

2 files changed

+113
-101
lines changed

‎docs/source/Footer.rst

Lines changed: 44 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,9 @@
1-
.. _header-n0:
1+
.. _header-n348:
22

33
Release History
44
===============
55

6-
.. _header-n2:
6+
.. _header-n350:
77

88
PyGAD 1.0.17
99
------------
@@ -15,7 +15,7 @@ Release Date: 15 April 2020
1515
values for the solutions. This allows the project to be customized to
1616
any problem by building the right fitness function.
1717

18-
.. _header-n7:
18+
.. _header-n355:
1919

2020
PyGAD 1.0.20
2121
-------------
@@ -35,7 +35,7 @@ Release Date: 4 May 2020
3535
4. The code object ``__code__`` of the passed fitness function is
3636
checked to ensure it has the right number of parameters.
3737

38-
.. _header-n18:
38+
.. _header-n366:
3939

4040
PyGAD 2.0.0
4141
------------
@@ -61,7 +61,7 @@ Release Date: 13 May 2020
6161
is called after each generation. This helps the user to do
6262
post-processing or debugging operations after each generation.
6363

64-
.. _header-n29:
64+
.. _header-n377:
6565

6666
PyGAD 2.1.0
6767
-----------
@@ -97,7 +97,7 @@ Release Date: 14 May 2020
9797

9898
2. Mutation is applied independently for the genes.
9999

100-
.. _header-n44:
100+
.. _header-n392:
101101

102102
PyGAD 2.2.1
103103
-----------
@@ -107,7 +107,7 @@ Release Date: 17 May 2020
107107
1. Adding 2 extra modules (pygad.nn and pygad.gann) for building and
108108
training neural networks with the genetic algorithm.
109109

110-
.. _header-n49:
110+
.. _header-n397:
111111

112112
PyGAD 2.2.2
113113
-----------
@@ -141,7 +141,7 @@ The new gene value is **0.1**.
141141
``crossover_type`` parameters of the pygad.GA class constructor. When
142142
``None``, this means the step is bypassed and has no action.
143143

144-
.. _header-n62:
144+
.. _header-n410:
145145

146146
PyGAD 2.3.0
147147
-----------
@@ -166,7 +166,7 @@ Release date: 1 June 2020
166166
6. The name of the ``pygad.nn.train_network()`` function is changed to
167167
``pygad.nn.train()``.
168168

169-
.. _header-n77:
169+
.. _header-n425:
170170

171171
PyGAD 2.4.0
172172
-----------
@@ -204,7 +204,7 @@ through more generations because no further improvement is possible.
204204
if ga_instance.best_solution()[1]>=70:
205205
return"stop"
206206
207-
.. _header-n87:
207+
.. _header-n435:
208208

209209
PyGAD 2.5.0
210210
-----------
@@ -300,7 +300,7 @@ If the user did not assign the initial population to the
300300
randomly based on the ``gene_space`` parameter. Moreover, the mutation
301301
is applied based on this parameter.
302302

303-
.. _header-n115:
303+
.. _header-n463:
304304

305305
PyGAD 2.6.0
306306
------------
@@ -318,7 +318,7 @@ Release Date: 6 August 2020
318318
``on_fitness``, ``on_parents``, ``on_crossover``, ``on_mutation``,
319319
``on_generation``, and ``on_stop``.
320320

321-
.. _header-n124:
321+
.. _header-n472:
322322

323323
PyGAD 2.7.0
324324
-----------
@@ -377,7 +377,7 @@ parameter or set it to ``"classification"`` (default value). In this
377377
case, the activation function of the last layer can be set to any type
378378
(e.g. softmax).
379379

380-
.. _header-n148:
380+
.. _header-n496:
381381

382382
PyGAD 2.7.1
383383
-----------
@@ -387,7 +387,7 @@ Release Date: 11 September 2020
387387
1. A bug fix when the ``problem_type`` argument is set to
388388
``regression``.
389389

390-
.. _header-n153:
390+
.. _header-n501:
391391

392392
PyGAD 2.7.2
393393
-----------
@@ -397,7 +397,7 @@ Release Date: 14 September 2020
397397
1. Bug fix to support building and training regression neural networks
398398
with multiple outputs.
399399

400-
.. _header-n158:
400+
.. _header-n506:
401401

402402
PyGAD 2.8.0
403403
-----------
@@ -407,7 +407,7 @@ Release Date: 20 September 2020
407407
1. Support of a new module named ``kerasga`` so that the Keras models
408408
can be trained by the genetic algorithm using PyGAD.
409409

410-
.. _header-n163:
410+
.. _header-n511:
411411

412412
PyGAD 2.8.1
413413
-----------
@@ -420,7 +420,7 @@ Release Date: 3 October 2020
420420
Management, Faculty of Engineering, Alexandria University,
421421
Egypt <https://www.linkedin.com/in/hamadakassem>`__.
422422

423-
.. _header-n168:
423+
.. _header-n516:
424424

425425
PyGAD 2.9.0
426426
------------
@@ -448,7 +448,7 @@ Release Date: 06 December 2020
448448
``numpy.int64``, ``numpy.float``, ``numpy.float16``,
449449
``numpy.float32``, or ``numpy.float64``.
450450

451-
.. _header-n181:
451+
.. _header-n529:
452452

453453
PyGAD 2.10.0
454454
------------
@@ -503,7 +503,13 @@ Release Date: 03 January 2021
503503
created to calculate the average fitness value used in adaptive
504504
mutation to filter the solutions.
505505

506-
.. _header-n202:
506+
11. The ``best_solution()`` method accepts a new optional parameter
507+
called ``pop_fitness``. It accepts a list of the fitness values of
508+
the solutions in the population. If ``None``, then the
509+
``cal_pop_fitness()`` method is called to calculate the fitness
510+
values of the population.
511+
512+
.. _header-n554:
507513

508514
PyGAD Projects at GitHub
509515
========================
@@ -513,7 +519,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
513519
open-source GitHub projects. A brief note about these projects is given
514520
in the next subsections.
515521

516-
.. _header-n204:
522+
.. _header-n556:
517523

518524
`GeneticAlgorithmPython<https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
519525
--------------------------------------------------------------------------------
@@ -524,7 +530,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
524530
is the first project which is an open-source Python 3 project for
525531
implementing the genetic algorithm based on NumPy.
526532

527-
.. _header-n207:
533+
.. _header-n559:
528534

529535
`NumPyANN<https://github.com/ahmedfgad/NumPyANN>`__
530536
----------------------------------------------------
@@ -538,7 +544,7 @@ neural network without using a training algorithm. Currently, it only
538544
supports classification and later regression will be also supported.
539545
Moreover, only one class is supported per sample.
540546

541-
.. _header-n210:
547+
.. _header-n562:
542548

543549
`NeuralGenetic<https://github.com/ahmedfgad/NeuralGenetic>`__
544550
--------------------------------------------------------------
@@ -551,7 +557,7 @@ projects
551557
`GeneticAlgorithmPython<https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
552558
and `NumPyANN<https://github.com/ahmedfgad/NumPyANN>`__.
553559

554-
.. _header-n213:
560+
.. _header-n565:
555561

556562
`NumPyCNN<https://github.com/ahmedfgad/NumPyCNN>`__
557563
----------------------------------------------------
@@ -563,7 +569,7 @@ convolutional neural networks using NumPy. The purpose of this project
563569
is to only implement the **forward pass** of a convolutional neural
564570
network without using a training algorithm.
565571

566-
.. _header-n216:
572+
.. _header-n568:
567573

568574
`CNNGenetic<https://github.com/ahmedfgad/CNNGenetic>`__
569575
--------------------------------------------------------
@@ -575,7 +581,7 @@ convolutional neural networks using the genetic algorithm. It uses the
575581
`GeneticAlgorithmPython<https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
576582
project for building the genetic algorithm.
577583

578-
.. _header-n219:
584+
.. _header-n571:
579585

580586
`KerasGA<https://github.com/ahmedfgad/KerasGA>`__
581587
--------------------------------------------------
@@ -588,7 +594,7 @@ the
588594
`GeneticAlgorithmPython<https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
589595
project for building the genetic algorithm.
590596

591-
.. _header-n222:
597+
.. _header-n574:
592598

593599
`TorchGA<https://github.com/ahmedfgad/TorchGA>`__
594600
--------------------------------------------------
@@ -604,7 +610,7 @@ project for building the genetic algorithm.
604610
`pygad.torchga<https://github.com/ahmedfgad/TorchGA>`__:
605611
https://github.com/ahmedfgad/TorchGA
606612

607-
.. _header-n226:
613+
.. _header-n578:
608614

609615
Submitting Issues
610616
=================
@@ -621,7 +627,7 @@ is not working properly or to ask for questions.
621627
If this is not a proper option for you, then check the **Contact Us**
622628
section for more contact details.
623629

624-
.. _header-n230:
630+
.. _header-n582:
625631

626632
Ask for Feature
627633
===============
@@ -638,7 +644,7 @@ to ahmed.f.gad@gmail.com.
638644

639645
Also check the **Contact Us** section for more contact details.
640646

641-
.. _header-n234:
647+
.. _header-n586:
642648

643649
Projects Built using PyGAD
644650
==========================
@@ -657,15 +663,15 @@ Within your message, please send the following details:
657663

658664
- Preferably, a link that directs the readers to your project
659665

660-
.. _header-n245:
666+
.. _header-n597:
661667

662668
For More Information
663669
====================
664670

665671
There are different resources that can be used to get started with the
666672
genetic algorithm and building it in Python.
667673

668-
.. _header-n247:
674+
.. _header-n599:
669675

670676
Tutorial: Implementing Genetic Algorithm in Python
671677
--------------------------------------------------
@@ -689,7 +695,7 @@ good resource to start with coding the genetic algorithm.
689695

690696
|image0|
691697

692-
.. _header-n258:
698+
.. _header-n610:
693699

694700
Tutorial: Introduction to Genetic Algorithm
695701
-------------------------------------------
@@ -708,7 +714,7 @@ which is available at these links:
708714

709715
|image1|
710716

711-
.. _header-n268:
717+
.. _header-n620:
712718

713719
Tutorial: Build Neural Networks in Python
714720
-----------------------------------------
@@ -728,7 +734,7 @@ available at these links:
728734

729735
|image2|
730736

731-
.. _header-n278:
737+
.. _header-n630:
732738

733739
Tutorial: Optimize Neural Networks with Genetic Algorithm
734740
---------------------------------------------------------
@@ -748,7 +754,7 @@ available at these links:
748754

749755
|image3|
750756

751-
.. _header-n288:
757+
.. _header-n640:
752758

753759
Tutorial: Building CNN in Python
754760
--------------------------------
@@ -774,7 +780,7 @@ good resource to start with coding CNNs.
774780

775781
|image4|
776782

777-
.. _header-n301:
783+
.. _header-n653:
778784

779785
Tutorial: Derivation of CNN from FCNN
780786
-------------------------------------
@@ -793,7 +799,7 @@ which is available at these links:
793799

794800
|image5|
795801

796-
.. _header-n311:
802+
.. _header-n663:
797803

798804
Book: Practical Computer Vision Applications Using Deep Learning with CNNs
799805
--------------------------------------------------------------------------
@@ -819,7 +825,7 @@ Find the book at these links:
819825
..figure::https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
820826
:alt:
821827

822-
.. _header-n326:
828+
.. _header-n678:
823829

824830
Contact Us
825831
==========

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp