Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

License

NotificationsYou must be signed in to change notification settings

wildrgbd/wildrgbd

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RGBD Objects in the Wild: Scaling Real-World 3D Object Learning from RGB-D Videos

Hongchi Xia1*, Yang Fu2*, Sifei Liu3, Xiaolong Wang2

*Equal contribution
1Shanghai Jiao Tong University,2University of California San Diego,3NVIDIA

Usage

Download

To download full WildRGB-D Dataset, it totally requires approximately 3.37T disk space to store zip packages, and approximately 4T to store all data.

To download all categories, executepython download.py --cat all.

To download specific one category, executepython download.py --cat <category_name>.

You could check all category names in the download scripts.

Dataset format

WildRGB-D    ├── <category_name>                   │   ├── scenes    │   │   ├── scenes_<scene_id>    │   │   │   ├── rgb    │   │   │   │   ├── <frame_id>.png    │   │   │   │   |    │   │   │   ├── depth    │   │   │   │   ├── <frame_id>.png    │   │   │   │   |    │   │   │   ├── masks    │   │   │   │   ├── <frame_id>.png    │   │   │   │   |    │   │   │   ├── metadata    │   │   │   ├── cam_poses.txt    │├── types.json    │├── nvs_list.json    │├── camera_eval_list.json

Dataset format details

  1. <category_name>/scenes/scenes_<scene_id>/depth/: We store depths in the depth scale of 1000. That is, when we load depth image and divide by 1000, we could get depth in meters.
  2. <category_name>/scenes/scenes_<scene_id>/metadata: It stores the camera intrinsics including image width, height and K.
  3. <category_name>/scenes/scenes_<scene_id>/cam_poses.txt: It stores the camera extrinsics. For every line, we list the <frame_id> first, then following the flatten 4x4 extrinsic matrix. Our camera extrinsics follows OpenCV convention, and it's camera to world matrix.
  4. <category_name>/types.json: It stores the video type of every scene in<category_name>/scenes/. It includes single object video marked in "single", multi-object video marked in "multi" and hand-object video marked in "hand".
  5. <category_name>/nvs_list.json: It stores the training and validation split we use in our Novel View Synthesis Task. For Single-Scene NVS, we only test on val split. For Cross-Scene NVS, we pre-train on train split and test on val split.
  6. <category_name>/camera_eval_list.json: It stores the training and validation split we use in our Camera Pose Evaluation Task.

Generate point clouds

Our WildRGB-D Dataset provides point cloud annotations. Please refer towildrgbd_generate_point_cloud.py.

Contact us

If you have any problems when downloading and using WildRGB-D Dataset, please contactHongchi Xia by email.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp