|
1 | 1 | #10. Factor Analysis |
2 | 2 |
|
3 | | - |
4 | | - |
5 | | -<figure><imgsrc="../.gitbook/assets/image (136).png"alt=""width="267"><figcaption></figcaption></figure> |
| 3 | +<figure><imgsrc="../.gitbook/assets/image (312).png"alt=""width="471"><figcaption></figcaption></figure> |
6 | 4 |
|
7 | 5 | 1. Click on_**Factor Analysis**_ in the_**Statistics**_ category |
8 | 6 |
|
9 | | - |
10 | | - |
11 | | -<figure><imgsrc="../.gitbook/assets/image (137).png"alt=""width="563"><figcaption></figcaption></figure> |
| 7 | +<figure><imgsrc="../.gitbook/assets/image (313).png"alt=""width="563"><figcaption></figcaption></figure> |
12 | 8 |
|
13 | 9 | 2._**Install Package**_: You can automatically_**Import**_ the necessary packages for factor analysis. |
14 | 10 | 3._**Data**_: Select the data for factor analysis. You can also choose specific conditions using the[_**Subset**_](../data-analysis/5.-subset.md) option. |
15 | 11 | 4._**Variable**_: Choose the variables from the selected data for factor analysis. |
16 | 12 | 5._**Rotation**_: Select a rotation method to analyze which factors best explain the data. |
17 | 13 | 6._**Method**_: Choose a factor analysis method: |
18 | 14 | *_**Principal**_: Principal Factor Analysis |
19 | | -*_ML_: Maximum Likelihood Factor Analysis |
20 | | -*_Minres_: Minimum Residual Factor Analysis |
| 15 | +*_**ML**_: Maximum Likelihood Factor Analysis |
| 16 | +*_**Minres**_: Minimum Residual Factor Analysis |
21 | 17 | 7._**Impute**_: Select a method for handling missing values: |
22 | 18 | ***Drop**: Remove rows with missing values. |
23 | 19 | ***Mean / Median**: Replace missing values with the mean or median. |
|