|
1 | 1 | #12. Evaluation |
2 | 2 |
|
| 3 | + |
| 4 | + |
| 5 | +<figure><imgsrc="../.gitbook/assets/image (176).png"alt=""width="285"><figcaption></figcaption></figure> |
| 6 | + |
| 7 | +1. Click on_**Evaluation**_ in the_**Machine Learning**_ category. |
| 8 | + |
| 9 | + |
| 10 | + |
| 11 | +<figure><imgsrc="../.gitbook/assets/image (177).png"alt=""width="421"><figcaption></figcaption></figure> |
| 12 | + |
| 13 | + |
| 14 | + |
| 15 | +2._**Model Type**_: Choose the type of model to evaluate: |
| 16 | +*[Regression / Classification](12.-evaluation.md#regression-classification) |
| 17 | +*[Clustering](12.-evaluation.md#clustering) |
| 18 | +3._**View Code**_: Preview the code. |
| 19 | +4._**Run**_: Execute the code. |
| 20 | + |
| 21 | + |
| 22 | + |
| 23 | +*** |
| 24 | + |
| 25 | +###Regression / Classification |
| 26 | + |
| 27 | + |
| 28 | + |
| 29 | +<figure><imgsrc="../.gitbook/assets/image (178).png"alt=""width="415"><figcaption></figcaption></figure> |
| 30 | + |
| 31 | +1._**Target Data**_: Specify the target data. |
| 32 | +2._**Predict Data**_: Specify the data to predict. |
| 33 | +3._**Evaluation Metrics**_: Select the evaluation metrics to apply. |
| 34 | + |
| 35 | + |
| 36 | + |
| 37 | +*** |
| 38 | + |
| 39 | +###Clustering |
| 40 | + |
| 41 | + |
| 42 | + |
| 43 | +<figure><imgsrc="../.gitbook/assets/image (179).png"alt=""width="416"><figcaption></figcaption></figure> |
| 44 | + |
| 45 | +1._**Clustered Index**_: Load the data containing index information assigned to the original data by clusters. |
| 46 | +2._**Feature Data**_: Load the original data. The_**Silhouette Score**_ is derived through computations with the data specified in the_**Clustered Index**_. |
| 47 | +3._**Target Data**_: Load the_**target data**_. The comparison with the_**Clustered Index**_ reveals how accurately the data has been clustered. |
| 48 | + |