Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit12755c6

Browse files
author
minjk-bl
committed
Fix Model options
1 parent2e369e7 commit12755c6

File tree

2 files changed

+86
-23
lines changed

2 files changed

+86
-23
lines changed

‎js/com/component/ModelEditor.js‎

Lines changed: 79 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -85,26 +85,28 @@ define([
8585
},
8686
'predict':{
8787
name:'predict',
88-
code:'${model}.predict(${featureData})',
88+
code:'${allocatePredict} = ${model}.predict(${featureData})',
8989
description:'Predict the closest target data X belongs to.',
9090
options:[
91-
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X_train'}
91+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X_test'},
92+
{name:'allocatePredict',label:'Allocate to',component:['input'],placeholder:'New variable',default:'pred'}
9293
]
9394
},
9495
'predict_proba':{
9596
name:'predict_proba',
96-
code:'${model}.predict_proba(${featureData})',
97+
code:'${allocatePredict} = ${model}.predict_proba(${featureData})',
9798
description:'Predict class probabilities for X.',
9899
options:[
99-
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X_train'}
100+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X_test'},
101+
{name:'allocatePredict',label:'Allocate to',component:['input'],placeholder:'New variable',default:'pred'}
100102
]
101103
},
102104
'transform':{
103105
name:'transform',
104106
code:'${allocateTransform} = ${model}.transform(${featureData})',
105107
description:'Apply dimensionality reduction to X.',
106108
options:[
107-
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X_train'},
109+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X'},
108110
{name:'allocateTransform',label:'Allocate to',component:['input'],placeholder:'New variable'}
109111
]
110112
}
@@ -113,7 +115,23 @@ define([
113115
switch(category){
114116
case'Data Preparation':
115117
actions={
116-
'fit':defaultActions['fit'],
118+
'fit':{
119+
name:'fit',
120+
code:'${model}.fit(${featureData})',
121+
description:'Fit Encoder/Scaler to X.',
122+
options:[
123+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X'}
124+
]
125+
},
126+
'fit_transform':{
127+
name:'fit_transform',
128+
code:'${allocateTransform} = ${model}.fit_transform(${featureData})',
129+
description:'Fit Encoder/Scaler to X, then transform X.',
130+
options:[
131+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X'},
132+
{name:'allocateTransform',label:'Allocate to',component:['input'],placeholder:'New variable'}
133+
]
134+
},
117135
'transform':{
118136
...defaultActions['transform'],
119137
description:'Transform labels to normalized encoding.'
@@ -141,11 +159,31 @@ define([
141159
'predict':defaultActions['predict'],
142160
'predict_proba':defaultActions['predict_proba'],
143161
}
162+
if(['LogisticRegression','SVC','GradientBoostingClassifier'].includes(modelType)){
163+
actions={
164+
...actions,
165+
'decision_function':{
166+
name:'decision_function',
167+
code:'${allocateScore} = ${model}.decision_function(${featureData})',
168+
description:'Compute the decision function of X.',
169+
options:[
170+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X'},
171+
{name:'allocateScore',label:'Allocate to',component:['input'],placeholder:'New variable'}
172+
]
173+
}
174+
}
175+
}
144176
break;
145177
case'Auto ML':
146178
actions={
147179
'fit':defaultActions['fit'],
148-
'predict':defaultActions['predict'],
180+
'predict':defaultActions['predict']
181+
}
182+
if(modelType=='TPOTClassifier'){
183+
actions={
184+
...actions,
185+
'predict_proba':defaultActions['predict_proba']
186+
}
149187
}
150188
break;
151189
case'Clustering':
@@ -155,10 +193,11 @@ define([
155193
'fit':defaultActions['fit'],
156194
'fit_predict':{
157195
name:'fit_predict',
158-
code:'${model}.fit_predict(${featureData})',
196+
code:'${allocatePredict} = ${model}.fit_predict(${featureData})',
159197
description:'Compute clusters from a data or distance matrix and predict labels.',
160198
options:[
161-
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X_train'}
199+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X'},
200+
{name:'allocatePredict',label:'Allocate to',component:['input'],placeholder:'New variable',default:'pred'}
162201
]
163202
}
164203
}
@@ -167,6 +206,37 @@ define([
167206
actions={
168207
'fit':defaultActions['fit'],
169208
'predict':defaultActions['predict'],
209+
'fit_predict':{
210+
name:'fit_predict',
211+
code:'${allocatePredict} = ${model}.fit_predict(${featureData})',
212+
description:'Compute cluster centers and predict cluster index for each sample.',
213+
options:[
214+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X'},
215+
{name:'allocatePredict',label:'Allocate to',component:['input'],placeholder:'New variable',default:'pred'}
216+
]
217+
}
218+
}
219+
if(modelType=='KMeans'){
220+
actions={
221+
...actions,
222+
'fit_transform':{
223+
name:'fit_transform',
224+
code:'${model}.fit_transform(${featureData})',
225+
description:'Compute clustering and transform X to cluster-distance space.',
226+
options:[
227+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X_train'}
228+
]
229+
},
230+
'transform':{
231+
name:'transform',
232+
code:'${allocateTransform} = ${model}.transform(${featureData})',
233+
description:'Transform X to a cluster-distance space.',
234+
options:[
235+
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X'},
236+
{name:'allocateTransform',label:'Allocate to',component:['input'],placeholder:'New variable'}
237+
]
238+
}
239+
}
170240
}
171241
break;
172242
case'Dimension Reduction':
@@ -303,15 +373,6 @@ define([
303373
options:[
304374
{name:'allocateCenters',label:'Allocate to',component:['input'],placeholder:'New variable'}
305375
]
306-
},
307-
'transform':{
308-
name:'transform',
309-
code:'${allocateTransform} = ${model}.transform(${featureData})',
310-
description:'Transform X to a cluster-distance space.',
311-
options:[
312-
{name:'featureData',label:'Feature Data',component:['var_select'],var_type:['DataFrame','Series'],default:'X'},
313-
{name:'allocateTransform',label:'Allocate to',component:['input'],placeholder:'New variable'}
314-
]
315376
}
316377
}
317378
}

‎js/m_ml/evaluation.js‎

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -161,11 +161,13 @@ define([
161161
code.appendLine("# ROC Curve");
162162
code.appendFormatLine("fpr, tpr, thresholds = roc_curve({0}, svc.decision_function({1}}))",predictData,targetData);
163163
code.appendLine("plt.plot(fpr, tpr, label='ROC Curve')");
164-
code.appendLine("plt.xlabel('Sensitivity') ");
165-
code.appendLine("plt.ylabel('Specificity') ")
164+
code.appendLine("plt.xlabel('Sensitivity') ");
165+
code.appendLine("plt.ylabel('Specificity') ")
166166
}
167167
if(auc){
168-
// FIXME:
168+
code.appendLine("# AUC");
169+
code.appendFormatLine("fpr, tpr, thresholds = roc_curve({0}, svc.decision_function({1}}))",predictData,targetData);
170+
code.appendLine("metrics.auc(fpr, tpr)");
169171
}
170172
}
171173

@@ -221,11 +223,11 @@ define([
221223
code.appendFormatLine("print(f'Silhouette score: {metrics.cluster.silhouette_score({0}, {1})}')",targetData,predictData);
222224
}
223225
if(ari){
224-
code.appendLine("# ARI");// FIXME:
226+
code.appendLine("# ARI");
225227
code.appendFormatLine("print(f'ARI: {metrics.cluster.adjusted_rand_score({0}, {1})}')",targetData,predictData);
226228
}
227229
if(nm){
228-
code.appendLine("# NM");// FIXME:
230+
code.appendLine("# NM");
229231
code.appendFormatLine("print(f'NM: {metrics.cluster.normalized_mutual_info_score({0}, {1})}')",targetData,predictData);
230232
}
231233
}

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp