Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

YOLOv5 pruning on COCO Dataset

License

NotificationsYou must be signed in to change notification settings

uyzhang/yolov5_prune

Repository files navigation

Clean code version ofYOLOv5(V6) pruning.

The original code comes from :https://github.com/midasklr/yolov5prune.

Steps:

  1. Basic training

    • In COCO Dataset
      python train.py --data coco.yaml --cfg yolov5s.yaml --weights'' --batch-size 32 --device 0 --epochs 300 --name coco --optimizer AdamW --data data/coco.yaml
  2. Sparse training

    • In COCO Dataset
      python train.py --batch 32 --epochs 50 --weights weights/yolov5s.pt --data data/coco.yaml --cfg models/yolov5s.yaml --name coco_sparsity --optimizer AdamW --bn_sparsity --sparsity_rate 0.00005 --device 0
  3. Pruning

    • In COCO Dataset
      python prune.py --percent 0.5 --weights runs/train/coco_sparsity13/weights/last.pt --data data/coco.yaml --cfg models/yolov5s.yaml --imgsz 640
  4. Fine-tuning

    • In COCO Dataset
      python train.py --img 640 --batch 32 --epochs 100 --weights runs/val/exp1/pruned_model.pt  --data data/coco.yaml --cfg models/yolov5s.yaml --name coco_ft --device 0 --optimizer AdamW --ft_pruned_model --hyp hyp.finetune_prune.yaml

Experiments

  • Result of COCO Dataset

    exp_namemodeloptim&epochlrsparitymAP@.5noteprune thresholdBN weight distributionWeight
    cocoyolov5sadamw 1000.01-0.5402----
    coco2yolov5sadamw 3000.01-0.5534---last.pt
    coco_sparsityyolov5sadamw 500.00320.00010.4826resume official SGD0.54-
    coco_sparsity2yolov5sadamw 500.00320.000050.50354resume official SGD0.48-
    coco_sparsity3yolov5sadamw 500.00320.00050.39514resume official SGD0.576-
    coco_sparsity4yolov5sadamw 500.00320.0010.34889resume official SGD0.576-
    coco_sparsity5yolov5sadamw 500.00320.000010.52948resume official SGD0.579-
    coco_sparsity6yolov5sadamw 500.010.00050.51202resume coco0.564-
    coco_sparsity10yolov5sadamw 500.010.0010.49504resume coco20.6-
    coco_sparsity11yolov5sadamw 500.010.00050.52609resume coco20.6-
    coco_sparsity13yolov5sadamw 1000.010.00050.533resume coco20.55last.pt
    coco_sparsity14yolov5sadamw 500.010.00070.515resume coco20.61-
    coco_sparsity15yolov5sadamw 1000.010.0010.501resume coco20.54-
  • The model of pruning coco_sparsity13

    coco_sparsity13mAP@.5Params/FLOPs
    origin0.5377.2M/16.5G
    after 10% prune0.53276.2M/15.6G
    after 20% prune0.53275.4M/14.7G
    after 30% prune0.53244.4M/13.8G
    after 33% prune0.52814.2M/13.6G
    after 34% prune0.52434.18M/13.5G
    after 34.5% prune0.52034.14M/13.5G
    after 35% prune0.25484.1M/13.4G
    after 38% prune0.20183.88M/13.0G
    after 40% prune0.16223.7M/12.7G
    after 42% prune0.11943.6M/12.4G
    after 45% prune0.05373.4M/12.0G
    after 50% prune0.00323.1M/11.4G

[8]ページ先頭

©2009-2025 Movatter.jp