Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

PyTorch implementation of several SSD based object detection algorithms.

License

NotificationsYou must be signed in to change notification settings

uoip/SSD-variants

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is a learning project trying to implement some varants of SSD in pytorch. SSD is a one-stage object detector, probably "currently the best detector with respect to the speed-vs-accuracy trade-off". There are many follow-up papers that either further improve the detection accuracy, or incorporate techniques like image segmentation to be used for Scene Understanding(e.g.BlitzNet), or modify SSD to detect rotatable objects(e.g.DRBox), or apply SSD to 3d object detection(e.g.Frustum PointNets):

Overview

Modelpublish timeBackboneinput sizeBoxesFPSVOC07VOC12COCO
SSD3002016VGG-16300 × 30087324677.275.925.1
SSD5122016VGG-16512 × 512245641979.878.528.8
SSD3212017.01ResNet-101321 × 3211708011.277.175.428.0
SSD5132017.01ResNet-101513 × 513436886.880.679.431.2
DSSD3212017.01ResNet-101321 × 321170809.578.676.328.0
DSSD5132017.01ResNet-101513 × 513436885.581.580.033.2
RUN3002017.07VGG-16300 × 3001164064 (Pascal)79.177.0
DSOD3002017.08DS/64-192-48-1300 × 30017.477.776.329.3
BlitzNet3002017.08ResNet-50300 × 300453902478.575.429.7
BlitzNet5122017.08ResNet-50512 × 5123276619.580.779.034.1
RefineDet3202017.11VGG-16320 × 320637540.380.078.129.4
RefineDet5122017.11VGG-16512 × 5121632024.181.880.033.0
RefineDet3202017.11ResNet-101320 × 32032.0
RefineDet5122017.11ResNet-101512 × 51236.4
RRC2017.04VGG-161272 × 375
DRBox2017.11VGG-16300 × 300
Frustum PointNets rgb part2017.11VGG-161280 × 384
  • FPS: # of processed images per second on Titan X GPU (batch size is 1)
  • VOC07: PASCAL 2007 detection results(mAP), training data: 07+12(07 trainval + 12 trainval)
  • VOC12: PASCAL 2012 detection results(mAP), training data: 07++12(07 trainval + 07 test + 12 trainval)
  • COCO: MS COCO 2015 test-dev detection results(mAP@[0.5:0.95]), train on trainval35k

All backbone networks above have been pre-trained on ImageNet CLS-LOC dataset, except DSOD, it's "training from scratch".

Implemented

  • SSD
  • RRC
  • RUN
  • DSOD
  • BlitzNet (detection part)
  • DRBox
  • Frustum PointNets

Note: "Implemented" above means the code of the model is almost done, it doesn't mean I have trained it, or even reproduced the results of original paper. Actually, I have only trained SSD300 on VOC07, the best result I got is 76.5%, lower than 77.2% reported inSSD paper. I'll continue this project when I find out what's the problem.

Requirements

  • Python 3.6+
  • numpy
  • cv2
  • pytorch
  • tensorboardX

Dataset

Download dataset VOC2007 and VOC2012, put them underVOCdevkit directory:

VOCdevkit-| VOC2007   -| Annotations   -| ImageSets   -| JPEGImages   -| SegmentationClass   -| SegmentationObject-| VOC2012   -| Annotations   -| ImageSets   -| JPEGImages   -| SegmentationClass   -| SegmentationObject

Usage

train:

python train.py --cuda --voc_root path/to/your/VOCdevkit --backbone path/to/your/vgg16_reducedfc.pth
The backbone networkvgg16_reducedfc.pth is from repoamdegroot/ssd.pytorch (download link:https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth).

evaluate:

python train.py --cuda --test --voc_root path/to/your/VOCdevkit --checkpoint path/to/your/xxx.pth

show demo:

python train.py --cuda --demo --voc_root path/to/your/VOCdevkit --checkpoint path/to/your/xxx.pth

Results

VOC07 mAP

modelsmy resultpaper result
SSD30076.5%77.2%

to be continued

Reference

About

PyTorch implementation of several SSD based object detection algorithms.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp