Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A powerful tool that translates ComfyUI workflows into executable Python code.

License

NotificationsYou must be signed in to change notification settings

turnbros/ComfyUI-to-Python-Extension

 
 

Repository files navigation

banner

TheComfyUI-to-Python-Extension is a powerful tool that translatesComfyUI workflows into executable Python code. Designed to bridge the gap between ComfyUI's visual interface and Python's programming environment, this script facilitates the seamless transition from design to code execution. Whether you're a data scientist, a software developer, or an AI enthusiast, this tool streamlines the process of implementing ComfyUI workflows in Python.

Convert this:

SDXL UI Example

To this:

import randomimport torchimport syssys.path.append("../")from nodes import (    VAEDecode,    KSamplerAdvanced,    EmptyLatentImage,    SaveImage,    CheckpointLoaderSimple,    CLIPTextEncode,)def main():    with torch.inference_mode():        checkpointloadersimple = CheckpointLoaderSimple()        checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(            ckpt_name="sd_xl_base_1.0.safetensors"        )        emptylatentimage = EmptyLatentImage()        emptylatentimage_5 = emptylatentimage.generate(            width=1024, height=1024, batch_size=1        )        cliptextencode = CLIPTextEncode()        cliptextencode_6 = cliptextencode.encode(            text="evening sunset scenery blue sky nature, glass bottle with a galaxy in it",            clip=checkpointloadersimple_4[1],        )        cliptextencode_7 = cliptextencode.encode(            text="text, watermark", clip=checkpointloadersimple_4[1]        )        checkpointloadersimple_12 = checkpointloadersimple.load_checkpoint(            ckpt_name="sd_xl_refiner_1.0.safetensors"        )        cliptextencode_15 = cliptextencode.encode(            text="evening sunset scenery blue sky nature, glass bottle with a galaxy in it",            clip=checkpointloadersimple_12[1],        )        cliptextencode_16 = cliptextencode.encode(            text="text, watermark", clip=checkpointloadersimple_12[1]        )        ksampleradvanced = KSamplerAdvanced()        vaedecode = VAEDecode()        saveimage = SaveImage()        for q in range(10):            ksampleradvanced_10 = ksampleradvanced.sample(                add_noise="enable",                noise_seed=random.randint(1, 2**64),                steps=25,                cfg=8,                sampler_name="euler",                scheduler="normal",                start_at_step=0,                end_at_step=20,                return_with_leftover_noise="enable",                model=checkpointloadersimple_4[0],                positive=cliptextencode_6[0],                negative=cliptextencode_7[0],                latent_image=emptylatentimage_5[0],            )            ksampleradvanced_11 = ksampleradvanced.sample(                add_noise="disable",                noise_seed=random.randint(1, 2**64),                steps=25,                cfg=8,                sampler_name="euler",                scheduler="normal",                start_at_step=20,                end_at_step=10000,                return_with_leftover_noise="disable",                model=checkpointloadersimple_12[0],                positive=cliptextencode_15[0],                negative=cliptextencode_16[0],                latent_image=ksampleradvanced_10[0],            )            vaedecode_17 = vaedecode.decode(                samples=ksampleradvanced_11[0], vae=checkpointloadersimple_12[2]            )            saveimage_19 = saveimage.save_images(                filename_prefix="ComfyUI", images=vaedecode_17[0]            )if __name__ == "__main__":    main()

Potential Use Cases

  • Streamlining the process for creating a lean app or pipeline deployment that uses a ComfyUI workflow
  • Creating programmatic experiments for various prompt/parameter values
  • Creating large queues for image generation (For example, you could adjust the script to generate 1000 images without clicking ctrl+enter 1000 times)
  • Easily expanding or iterating on your architecture in Python once a foundational workflow is in place in the GUI

V1.3.0 Release Notes

  • Generate .py file directly from the ComfyUI Web App

Save As Script

V1.2.1 Release Notes

  • Dynamically changecomfyui_to_python.py parameters with CLI arguments
  • Hotfix to handle nodes that accept kwargs.

V1.2.0 Release Notes

  • Updates to adhere to latest changes fromComfyUI

V1.0.0 Release Notes

  • Use all the custom nodes!
    • Custom nodes are now supported. If you run into any issues with code execution, first ensure that the each node works as expected in the GUI. If it works in the GUI, but not in the generated script, please submit an issue.

Installation

  1. Navigate to yourComfyUI/custom_nodes directory

  2. Clone this repo

    git clone https://github.com/pydn/ComfyUI-to-Python-Extension.git

    After cloning the repo, yourComfyUI directory should look like this:

    /comfy/comfy_extras/custom_nodes--/ComfyUI-to-Python-Extension/input/models/output/script_examples/web.gitignoreLICENSEREADME.mdcomfyui_screenshot.pngcuda_mollac.pyexecution.pyextra_model_paths.yaml.examplefolder_paths.pylatent_preview.pymain.pynodes.pyrequirements.txtserver.py

Web App Use

  1. Launch ComfyUI

  2. Load your favorite workflow and clickSave As Script

Save As Script

  1. Type your desired file name into the pop up screen.

  2. Move .py file from your downloads folder to yourComfyUI directory.

  3. Now you can execute the newly created .py file to generate images without launching a server.

CLI Usage

  1. Navigate to theComfyUI-to-Python-Extension folder and install requirements

    pip install -r requirements.txt
  2. Launch ComfyUI, click the gear icon overQueue Prompt, then checkEnable Dev mode Options.THE SCRIPT WILL NOT WORK IF YOU DO NOT ENABLE THIS OPTION!

Enable Dev Mode Options

  1. Load up your favorite workflows, then click the newly enabledSave (API Format) button under Queue Prompt

  2. Move the downloaded .json workflow file to yourComfyUI/ComfyUI-to-Python-Extension folder

  3. If needed, add arguments when executingcomfyui_to_python.py to update the defaultinput_file andoutput_file to match your .json workflow file and desired .py file name. By default, the script will look for a file calledworkflow_api.json. You can also update thequeue_size variable to your desired number of images that you want to generate in a single script execution. By default, the scripts will generate 10 images. Runpython comfyui_to_python.py --help for more details.

6a. Run the script with default arguments:

python comfyui_to_python.py

6b. Run the script with optional arguments:

python comfyui_to_python.py --input_file"workflow_api (2).json" --output_file my_workflow.py --queue_size 100
  1. After runningcomfyui_to_python.py, a new .py file will be created in the current working directory. If you made no changes, look forworkflow_api.py.

  2. Now you can execute the newly created .py file to generate images without launching a server.

About

A powerful tool that translates ComfyUI workflows into executable Python code.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python95.1%
  • JavaScript4.9%

[8]ページ先頭

©2009-2025 Movatter.jp