svm
Here are 3,624 public repositories matching this topic...
Language:All
Sort:Most stars
100 Days of ML Coding
- Updated
Dec 29, 2023
AiLearning:数据分析+机器学习实战+线性代数+PyTorch+NLTK+TF2
- Updated
Nov 12, 2024 - Python
⚡机器学习实战(Python3):kNN、决策树、贝叶斯、逻辑回归、SVM、线性回归、树回归
- Updated
Jul 12, 2024 - Python
Code for Tensorflow Machine Learning Cookbook
- Updated
May 23, 2024 - Jupyter Notebook
Python code for common Machine Learning Algorithms
- Updated
Mar 10, 2024 - Jupyter Notebook
The Operator Splitting QP Solver
- Updated
Mar 16, 2025 - C
利用pytorch实现图像分类的一个完整的代码,训练,预测,TTA,模型融合,模型部署,cnn提取特征,svm或者随机森林等进行分类,模型蒸馏,一个完整的代码
- Updated
Feb 6, 2023 - Jupyter Notebook
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models (easy&clear)
- Updated
Sep 22, 2022 - Jupyter Notebook
Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree.
- Updated
Oct 31, 2017 - Jupyter Notebook
⚡️⚡️⚡️《机器学习实战》代码(基于Python3)🚀
- Updated
Feb 5, 2020 - Python
Java Statistical Analysis Tool, a Java library for Machine Learning
- Updated
Dec 16, 2022 - Java
Curso de Introducción a Machine Learning con Python
- Updated
Oct 31, 2023 - Jupyter Notebook
Created vehicle detection pipeline with two approaches: (1) deep neural networks (YOLO framework) and (2) support vector machines ( OpenCV + HOG).
- Updated
Apr 18, 2024 - Python
Machine Learning library for the web and Node.
- Updated
Mar 16, 2025 - TypeScript
detect stages in video automatically
- Updated
Mar 1, 2025 - Python
Pytorch、Scikit-learn实现多种分类方法,包括逻辑回归(Logistic Regression)、多层感知机(MLP)、支持向量机(SVM)、K近邻(KNN)、CNN、RNN,极简代码适合新手小白入门,附英文实验报告(ACM模板)
- Updated
Oct 16, 2020 - Python
Regression, Scrapers, and Visualization
- Updated
Jul 6, 2023 - Jupyter Notebook
Improve this page
Add a description, image, and links to thesvm topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with thesvm topic, visit your repo's landing page and select "manage topics."