- Notifications
You must be signed in to change notification settings - Fork1
Weighted Dependence Measures
License
Unknown, MIT licenses found
Licenses found
Unknown
LICENSEMIT
LICENSE.mdNotificationsYou must be signed in to change notification settings
tnagler/wdm-r
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
R interface to thewdm C++ library,which provides efficient implementations of weighted dependence measuresand related independence tests:
- Pearsons’s rho
- Spearmans’s rho
- Kendall’s tau
- Blomqvist’s beta
- Hoeffding’s D
All measures are computed inO(n logn) time, wheren is thenumber of observations.
For a detailed description of the functionality, see theAPIdocumentation.
- the stable release from CRAN:
install.packages("wdm")- the development version fromGitHub with:
# install.packages("devtools")install_submodule_git<-function(x,...) {install_dir<- tempfile() system(paste("git clone --recursive", shQuote(x), shQuote(install_dir)))devtools::install(install_dir,...)}install_submodule_git("https://github.com/tnagler/wdm-r")
This repo containswdm as a submodule.For a full clone use
git clone --recurse-submodules<repo-address>
library(wdm)x<- rnorm(100)y<- rpois(100,1)# all but Hoeffding's D can handle tiesw<- runif(100)wdm(x,y,method="kendall")# unweighted#> [1] -0.03093257wdm(x,y,method="kendall",weights=w)# weighted#> [1] 0.04835766
x<-matrix(rnorm(100*3),100,3)wdm(x,method="spearman")# unweighted#> [,1] [,2] [,3]#> [1,] 1.00000000 0.2194659 -0.05435344#> [2,] 0.21946595 1.0000000 0.11401140#> [3,] -0.05435344 0.1140114 1.00000000wdm(x,method="spearman",weights=w)# weighted#> [,1] [,2] [,3]#> [1,] 1.0000000 0.2575236 -0.1689466#> [2,] 0.2575236 1.0000000 0.1197442#> [3,] -0.1689466 0.1197442 1.0000000
x<- rnorm(100)y<- rpois(100,1)# all but Hoeffding's D can handle tiesw<- runif(100)indep_test(x,y,method="kendall")# unweighted#> estimate statistic p_value n_eff method alternative#> 1 0.1278922 1.532215 0.1254693 100 kendall two-sidedindep_test(x,y,method="kendall",weights=w)# weighted#> estimate statistic p_value n_eff method alternative#> 1 0.1704296 1.779486 0.07516007 79.6939 kendall two-sided
About
Weighted Dependence Measures
Topics
Resources
License
Unknown, MIT licenses found
Licenses found
Unknown
LICENSEMIT
LICENSE.mdUh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
No packages published
Uh oh!
There was an error while loading.Please reload this page.
Contributors2
Uh oh!
There was an error while loading.Please reload this page.