Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Time series Timeseries Deep Learning Machine Learning Python Pytorch fastai | State-of-the-art Deep Learning library for Time Series and Sequences in Pytorch / fastai

License

NotificationsYou must be signed in to change notification settings

timeseriesAI/tsai

Repository files navigation



CIPyPIConda (channel only)DOIPRs

Description

State-of-the-art Deep Learning library for Time Series and Sequences.

tsai is an open-source deep learning package built on top of Pytorch &fastai focused on state-of-the-art techniques for time series tasks likeclassification, regression, forecasting, imputation…

tsai is currently under active development by timeseriesAI.

What’s new:

During the last few releases, here are some of the most significantadditions totsai:

  • New models: PatchTST (Accepted by ICLR 2023), RNN with Attention(RNNAttention, LSTMAttention, GRUAttention), TabFusionTransformer, …
  • New datasets: we have increased the number of datasets you candownload usingtsai:
    • 128 univariate classification datasets
    • 30 multivariate classification datasets
    • 15 regression datasets
    • 62 forecasting datasets
    • 9 long term forecasting datasets
  • New tutorials:PatchTST.Based on some of your requests, we are planning to release additionaltutorials on data preparation and forecasting.
  • New functionality: sklearn-type pipeline transforms, walk-fowardcross validation, reduced RAM requirements, and a lot of newfunctionality to perform more accurate time series forecasts.
  • Pytorch 2.0 support.

Installation

Pip install

You can install thelatest stable version from pip using:

pipinstalltsai

If you plan to develop tsai yourself, or want to be on the cutting edge,you can use an editable install. First install PyTorch, and then:

gitclonehttps://github.com/timeseriesAI/tsaipipinstall-e"tsai[dev]"

Note: starting with tsai 0.3.0 tsai will only install hard dependencies.Other soft dependencies (which are only required for selected tasks)will not be installed by default (this is the recommended approach. Ifyou require any of the dependencies that is not installed, tsai will askyou to install it when necessary). If you still want to install tsaiwith all its dependencies you can do it by running:

pipinstalltsai[extras]

Conda install

You can also install tsai using conda (note that if you replace condawith mamba the install process will be much faster and more reliable):

condainstall-ctimeseriesaitsai

Documentation

Here’s the link to thedocumentation.

Available models:

Here’s a list with some of the state-of-the-art models available intsai:

plus other custom models like: TransformerModel, LSTMAttention,GRUAttention, …

How to start using tsai?

To get to know the tsai package, we’d suggest you start with thisnotebook in Google Colab:01_Intro_to_Time_Series_ClassificationIt provides an overview of a time series classification task.

We have also develop many othertutorialnotebooks.

To use tsai in your own notebooks, the only thing you need to do afteryou have installed the package is to run this:

fromtsai.allimport*

Examples

These are just a few examples of how you can usetsai:

Binary, univariate classification

Training:

fromtsai.basicsimport*X,y,splits=get_classification_data('ECG200',split_data=False)tfms= [None,TSClassification()]batch_tfms=TSStandardize()clf=TSClassifier(X,y,splits=splits,path='models',arch="InceptionTimePlus",tfms=tfms,batch_tfms=batch_tfms,metrics=accuracy,cbs=ShowGraph())clf.fit_one_cycle(100,3e-4)clf.export("clf.pkl")

Inference:

fromtsai.inferenceimportload_learnerclf=load_learner("models/clf.pkl")probas,target,preds=clf.get_X_preds(X[splits[1]],y[splits[1]])

Multi-class, multivariate classification

Training:

fromtsai.basicsimport*X,y,splits=get_classification_data('LSST',split_data=False)tfms= [None,TSClassification()]batch_tfms=TSStandardize(by_sample=True)mv_clf=TSClassifier(X,y,splits=splits,path='models',arch="InceptionTimePlus",tfms=tfms,batch_tfms=batch_tfms,metrics=accuracy,cbs=ShowGraph())mv_clf.fit_one_cycle(10,1e-2)mv_clf.export("mv_clf.pkl")

Inference:

fromtsai.inferenceimportload_learnermv_clf=load_learner("models/mv_clf.pkl")probas,target,preds=mv_clf.get_X_preds(X[splits[1]],y[splits[1]])

Multivariate Regression

Training:

fromtsai.basicsimport*X,y,splits=get_regression_data('AppliancesEnergy',split_data=False)tfms= [None,TSRegression()]batch_tfms=TSStandardize(by_sample=True)reg=TSRegressor(X,y,splits=splits,path='models',arch="TSTPlus",tfms=tfms,batch_tfms=batch_tfms,metrics=rmse,cbs=ShowGraph(),verbose=True)reg.fit_one_cycle(100,3e-4)reg.export("reg.pkl")

Inference:

fromtsai.inferenceimportload_learnerreg=load_learner("models/reg.pkl")raw_preds,target,preds=reg.get_X_preds(X[splits[1]],y[splits[1]])

The ROCKETs (RocketClassifier, RocketRegressor, MiniRocketClassifier,MiniRocketRegressor, MiniRocketVotingClassifier orMiniRocketVotingRegressor) are somewhat different models. They are notactually deep learning models (although they use convolutions) and areused in a different way.

⚠️ You’ll also need to install sktime to be able to use them. You caninstall it separately:

pipinstallsktime

or use:

pipinstalltsai[extras]

Training:

fromsklearn.metricsimportmean_squared_error,make_scorerfromtsai.data.externalimportget_Monash_regression_datafromtsai.models.MINIROCKETimportMiniRocketRegressorX_train,y_train,*_=get_Monash_regression_data('AppliancesEnergy')rmse_scorer=make_scorer(mean_squared_error,greater_is_better=False)reg=MiniRocketRegressor(scoring=rmse_scorer)reg.fit(X_train,y_train)reg.save('MiniRocketRegressor')

Inference:

fromsklearn.metricsimportmean_squared_errorfromtsai.data.externalimportget_Monash_regression_datafromtsai.models.MINIROCKETimportload_minirocket*_,X_test,y_test=get_Monash_regression_data('AppliancesEnergy')reg=load_minirocket('MiniRocketRegressor')y_pred=reg.predict(X_test)mean_squared_error(y_test,y_pred,squared=False)

Forecasting

You can use tsai for forecast in the following scenarios:

  • univariate or multivariate time series input
  • univariate or multivariate time series output
  • single or multi-step ahead

You’ll need to: * prepare X (time series input) and the target y (seedocumentation)* select PatchTST or one of tsai’s models ending in Plus (TSTPlus,InceptionTimePlus, TSiTPlus, etc). The model will auto-configure a headto yield an output with the same shape as the target input y.

Single step

Training:

fromtsai.basicsimport*ts=get_forecasting_time_series("Sunspots").valuesX,y=SlidingWindow(60,horizon=1)(ts)splits=TimeSplitter(235)(y)tfms= [None,TSForecasting()]batch_tfms=TSStandardize()fcst=TSForecaster(X,y,splits=splits,path='models',tfms=tfms,batch_tfms=batch_tfms,bs=512,arch="TSTPlus",metrics=mae,cbs=ShowGraph())fcst.fit_one_cycle(50,1e-3)fcst.export("fcst.pkl")

Inference:

fromtsai.inferenceimportload_learnerfcst=load_learner("models/fcst.pkl",cpu=False)raw_preds,target,preds=fcst.get_X_preds(X[splits[1]],y[splits[1]])raw_preds.shape# torch.Size([235, 1])

Multi-step

This example show how to build a 3-step ahead univariate forecast.

Training:

fromtsai.basicsimport*ts=get_forecasting_time_series("Sunspots").valuesX,y=SlidingWindow(60,horizon=3)(ts)splits=TimeSplitter(235,fcst_horizon=3)(y)tfms= [None,TSForecasting()]batch_tfms=TSStandardize()fcst=TSForecaster(X,y,splits=splits,path='models',tfms=tfms,batch_tfms=batch_tfms,bs=512,arch="TSTPlus",metrics=mae,cbs=ShowGraph())fcst.fit_one_cycle(50,1e-3)fcst.export("fcst.pkl")

Inference:

fromtsai.inferenceimportload_learnerfcst=load_learner("models/fcst.pkl",cpu=False)raw_preds,target,preds=fcst.get_X_preds(X[splits[1]],y[splits[1]])raw_preds.shape# torch.Size([235, 3])

Input data format

The input format for all time series models and image models in tsai isthe same. An np.ndarray (or array-like object like zarr, etc) with 3dimensions:

[# samples x # variables x sequence length]

The input format for tabular models in tsai (like TabModel,TabTransformer and TabFusionTransformer) is a pandas dataframe. Seeexample.

How to contribute to tsai?

We welcome contributions of all kinds. Development of enhancements, bugfixes, documentation, tutorial notebooks, …

We have created a guide to help you start contributing to tsai. You canread ithere.

Enterprise support and consulting services:

Want to make the most out of timeseriesAI/tsai in a professionalsetting? Let us help. Send us an email to learn more:info@timeseriesai.co

Citing tsai

If you use tsai in your research please use the following BibTeX entry:

@Misc{tsai,    author =       {Ignacio Oguiza},    title =        {tsai - A state-of-the-art deep learning library for time series and sequential data},    howpublished = {Github},    year =         {2023},    url =          {https://github.com/timeseriesAI/tsai}}

[8]ページ先頭

©2009-2025 Movatter.jp