- Notifications
You must be signed in to change notification settings - Fork2.1k
dplyr: A grammar of data manipulation
License
Unknown, MIT licenses found
Licenses found
tidyverse/dplyr
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
dplyr is a grammar of data manipulation, providing a consistent set ofverbs that help you solve the most common data manipulation challenges:
mutate()
adds new variables that are functions of existing variablesselect()
picks variables based on their names.filter()
picks cases based on their values.summarise()
reduces multiple values down to a single summary.arrange()
changes the ordering of the rows.
These all combine naturally withgroup_by()
which allows you toperform any operation “by group”. You can learn more about them invignette("dplyr")
. As well as these single-table verbs, dplyr alsoprovides a variety of two-table verbs, which you can learn about invignette("two-table")
.
If you are new to dplyr, the best place to start is thedatatransformation chapter in R forData Science.
In addition to data frames/tibbles, dplyr makes working with othercomputational backends accessible and efficient. Below is a list ofalternative backends:
arrow for larger-than-memorydatasets, including on remote cloud storage like AWS S3, using theApache Arrow C++ engine,Acero.
dtplyr for large, in-memory datasets.Translates your dplyr code to high performancedata.table code.
dbplyr for data stored in arelational database. Translates your dplyr code to SQL.
duckplyr for usingduckdb on large, in-memory datasets with zeroextra copies. Translates your dplyr code to high performance duckdbqueries with an automatic R fallback when translation isn’t possible.
duckdb for large datasets that arestill small enough to fit on your computer.
sparklyr for very large datasets storedinApache Spark.
# The easiest way to get dplyr is to install the whole tidyverse:install.packages("tidyverse")# Alternatively, install just dplyr:install.packages("dplyr")
To get a bug fix or to use a feature from the development version, youcan install the development version of dplyr from GitHub.
# install.packages("pak")pak::pak("tidyverse/dplyr")
library(dplyr)starwars %>% filter(species=="Droid")#> # A tibble: 6 × 14#> name height mass hair_color skin_color eye_color birth_year sex gender#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>#> 1 C-3PO 167 75 <NA> gold yellow 112 none masculi…#> 2 R2-D2 96 32 <NA> white, blue red 33 none masculi…#> 3 R5-D4 97 32 <NA> white, red red NA none masculi…#> 4 IG-88 200 140 none metal red 15 none masculi…#> 5 R4-P17 96 NA none silver, red red, blue NA none feminine#> # ℹ 1 more row#> # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,#> # vehicles <list>, starships <list>starwars %>% select(name, ends_with("color"))#> # A tibble: 87 × 4#> name hair_color skin_color eye_color#> <chr> <chr> <chr> <chr>#> 1 Luke Skywalker blond fair blue#> 2 C-3PO <NA> gold yellow#> 3 R2-D2 <NA> white, blue red#> 4 Darth Vader none white yellow#> 5 Leia Organa brown light brown#> # ℹ 82 more rowsstarwars %>% mutate(name,bmi=mass/ ((height/100)^2)) %>% select(name:mass,bmi)#> # A tibble: 87 × 4#> name height mass bmi#> <chr> <int> <dbl> <dbl>#> 1 Luke Skywalker 172 77 26.0#> 2 C-3PO 167 75 26.9#> 3 R2-D2 96 32 34.7#> 4 Darth Vader 202 136 33.3#> 5 Leia Organa 150 49 21.8#> # ℹ 82 more rowsstarwars %>% arrange(desc(mass))#> # A tibble: 87 × 14#> name height mass hair_color skin_color eye_color birth_year sex gender#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>#> 1 Jabba De… 175 1358 <NA> green-tan… orange 600 herm… mascu…#> 2 Grievous 216 159 none brown, wh… green, y… NA male mascu…#> 3 IG-88 200 140 none metal red 15 none mascu…#> 4 Darth Va… 202 136 none white yellow 41.9 male mascu…#> 5 Tarfful 234 136 brown brown blue NA male mascu…#> # ℹ 82 more rows#> # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,#> # vehicles <list>, starships <list>starwars %>% group_by(species) %>% summarise(n= n(),mass= mean(mass,na.rm=TRUE) ) %>% filter(n>1,mass>50 )#> # A tibble: 9 × 3#> species n mass#> <chr> <int> <dbl>#> 1 Droid 6 69.8#> 2 Gungan 3 74#> 3 Human 35 81.3#> 4 Kaminoan 2 88#> 5 Mirialan 2 53.1#> # ℹ 4 more rows
If you encounter a clear bug, please file an issue with a minimalreproducible example onGitHub. For questions andother discussion, please useforum.posit.co.
Please note that this project is released with aContributor Code ofConduct. By participatingin this project you agree to abide by its terms.
About
dplyr: A grammar of data manipulation