Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

HashNet on CUB200 #38

Open
Open
@zhouxiaohang

Description

@zhouxiaohang

Hi, I've tried to use HashNet to Fine-grained recognition, so I adopted the PyTorch code to CUB200 dataset with finetuned ResNet50, but I can't make the loss converge. I've tried different optimizers like SGD, Adam, RMSprop, and different class_num values like 1.0 and 200.0, different lr values from 1e-5 to 1e-3.

Here is a set of parameters which I tried:

python train.py \    --dataset cub200 \    --prefix resnet50_hashnet \    --hash_bit 64 \    --net ResNet50 \    --lr 1e-5 \    --class_num 1.0{'l_weight': 1.0, 'q_weight': 0, 'l_threshold': 15.0, 'sigmoid_param': 0.15625, 'class_num': 1.0}{'type': 'RMSprop', 'optim_params': {'lr': 1.0, 'weight_decay': 1e-05}, 'lr_type': 'step', 'lr_param': {'init_lr': 1e-05, 'gamma': 0.5, 'step': 2000}}

But the training loss is always around 0.69, and mAP is extremely as low as 0.04.

No matter what parameters are used, mAP is always lower than 0.05. Intuitively, this's not reasonable.

Have you ever apply HashNet on CUB200? Do you have any ideas on it? Thanks.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions


      [8]ページ先頭

      ©2009-2025 Movatter.jp