Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A WebGL accelerated JavaScript library for training and deploying ML models.

License

NotificationsYou must be signed in to change notification settings

tensorflow/tfjs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TensorFlow.js is an open-source hardware-accelerated JavaScript library fortraining and deploying machine learning models.

Develop ML in the Browser
Use flexible and intuitive APIs to build models from scratch using the low-levelJavaScript linear algebra library or the high-level layers API.

Develop ML in Node.js
Execute native TensorFlow with the same TensorFlow.js API under the Node.jsruntime.

Run Existing models
Use TensorFlow.js model converters to run pre-existing TensorFlow models rightin the browser.

Retrain Existing models
Retrain pre-existing ML models using sensor data connected to the browser orother client-side data.

About this repo

This repository contains the logic and scripts that combineseveral packages.

APIs:

Backends/Platforms:

If you care about bundle size, you can import those packages individually.

If you are looking for Node.js support, check out theTensorFlow.js Node directory.

Examples

Check out ourexamples repositoryand ourtutorials.

Gallery

Be sure to check outthe gallery of all projects related to TensorFlow.js.

Pre-trained models

Be sure to also check out ourmodels repository where we host pre-trained modelson NPM.

Benchmarks

  • Local benchmark tool. Use this webpage tool to collect the performance related metrics (speed, memory, etc) of TensorFlow.js models and kernelson your local device with CPU, WebGL or WASM backends. You can benchmark custom models by following thisguide.
  • Multi-device benchmark tool. Use this tool to collect the same performance related metricson a collection of remote devices.

Getting started

There are two main ways to get TensorFlow.js in your JavaScript project:viascript tagsor by installing it fromNPMand using a build tool likeParcel,WebPack, orRollup.

via Script Tag

Add the following code to an HTML file:

<html><head><!-- Load TensorFlow.js --><scriptsrc="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js"></script><!-- Place your code in the script tag below. You can also use an external .js file --><script>// Notice there is no 'import' statement. 'tf' is available on the index-page// because of the script tag above.// Define a model for linear regression.constmodel=tf.sequential();model.add(tf.layers.dense({units:1,inputShape:[1]}));// Prepare the model for training: Specify the loss and the optimizer.model.compile({loss:'meanSquaredError',optimizer:'sgd'});// Generate some synthetic data for training.constxs=tf.tensor2d([1,2,3,4],[4,1]);constys=tf.tensor2d([1,3,5,7],[4,1]);// Train the model using the data.model.fit(xs,ys).then(()=>{// Use the model to do inference on a data point the model hasn't seen before:// Open the browser devtools to see the outputmodel.predict(tf.tensor2d([5],[1,1])).print();});</script></head><body></body></html>

Open up that HTML file in your browser, and the code should run!

via NPM

Add TensorFlow.js to your project usingyarnornpm.Note: Becausewe use ES2017 syntax (such asimport), this workflow assumes you are using a modern browser or a bundler/transpilerto convert your code to something older browsers understand. See ourexamplesto see how we useParcel to buildour code. However, you are free to use any build tool that you prefer.

import*astffrom'@tensorflow/tfjs';// Define a model for linear regression.constmodel=tf.sequential();model.add(tf.layers.dense({units:1,inputShape:[1]}));// Prepare the model for training: Specify the loss and the optimizer.model.compile({loss:'meanSquaredError',optimizer:'sgd'});// Generate some synthetic data for training.constxs=tf.tensor2d([1,2,3,4],[4,1]);constys=tf.tensor2d([1,3,5,7],[4,1]);// Train the model using the data.model.fit(xs,ys).then(()=>{// Use the model to do inference on a data point the model hasn't seen before:model.predict(tf.tensor2d([5],[1,1])).print();});

See ourtutorials,examplesanddocumentation for more details.

Importing pre-trained models

We support porting pre-trained models from:

Various ops supported in different backends

Please refer below :

Find out more

TensorFlow.js is a part of theTensorFlow ecosystem. For more info:

Thanks,BrowserStack, for providing testing support.


[8]ページ先頭

©2009-2025 Movatter.jp