Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

tf.raw_ops.BlockLSTMGradV2 crashes whenseq_len_max exceeds time dimension of inputs (missing shape validation) #106407

Open
Assignees
dhantule
@KnightGOKU

Description

@KnightGOKU

Issue type

Bug

Have you reproduced the bug with TensorFlow Nightly?

Yes

Source

source

TensorFlow version

tf 2.19

Custom code

Yes

OS platform and distribution

No response

Mobile device

No response

Python version

No response

Bazel version

No response

GCC/compiler version

No response

CUDA/cuDNN version

No response

GPU model and memory

No response

Current behavior?

When callingtf.raw_ops.BlockLSTMGradV2 with aseq_len_max value larger than the actual time dimension of inputs, the process crashes (segmentation fault) instead of raising a Python exception.

The following code would crash ontf 2.19. To reproduce the issue, I provided that acolab notebook to reproduce the error.

Standalone code to reproduce the issue

import tensorflow as tfimport numpy as npseq_len_max = 3batch_size = 2input_size = 4num_units = 5x = tf.constant(np.random.randn(seq_len_max - 1, batch_size, input_size).astype(np.float32))# x: (2,2,4), seq_len_max:3cs_prev = tf.constant(np.random.randn(batch_size, num_units).astype(np.float32))h_prev = tf.constant(np.random.randn(batch_size, num_units).astype(np.float32))w = tf.constant(np.random.randn(input_size + num_units, 4* num_units).astype(np.float32))wci = tf.constant(np.random.randn(num_units).astype(np.float32))wcf = tf.constant(np.random.randn(num_units).astype(np.float32))wco = tf.constant(np.random.randn(num_units).astype(np.float32))b = tf.constant(np.random.randn(4* num_units).astype(np.float32))i = tf.constant(np.random.randn(seq_len_max - 1, batch_size, num_units).astype(np.float32))cs = tf.constant(np.random.randn(seq_len_max - 1, batch_size, num_units).astype(np.float32))f = tf.constant(np.random.randn(seq_len_max - 1, batch_size, num_units).astype(np.float32))o = tf.constant(np.random.randn(seq_len_max - 1, batch_size, num_units).astype(np.float32))ci = tf.constant(np.random.randn(seq_len_max - 1, batch_size, num_units).astype(np.float32))co = tf.constant(np.random.randn(seq_len_max - 1, batch_size, num_units).astype(np.float32))h = tf.constant(np.random.randn(seq_len_max - 1, batch_size, num_units).astype(np.float32))cs_grad = tf.constant(np.random.randn(seq_len_max - 1, batch_size, num_units).astype(np.float32))h_grad = tf.constant(np.random.randn(seq_len_max - 1, batch_size, num_units).astype(np.float32))use_peephole = Trueresult = tf.raw_ops.BlockLSTMGradV2(    seq_len_max=seq_len_max,# seq_len_max:3    x=x,#  x: (2,2,4)    cs_prev=cs_prev,    h_prev=h_prev,    w=w,    wci=wci,    wcf=wcf,    wco=wco,    b=b,    i=i,    cs=cs,    f=f,    o=o,    ci=ci,    co=co,    h=h,    cs_grad=cs_grad,    h_grad=h_grad,    use_peephole=use_peephole)

Relevant log output

2025-12-17 11:28:27.238936: F tensorflow/core/framework/tensor.cc:1078] Check failed: limit<= dim0_size (3 vs. 2)[1]    2650852 abort (core dumped)

Metadata

Metadata

Assignees

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions


    [8]ページ先頭

    ©2009-2025 Movatter.jp