Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.

License

NotificationsYou must be signed in to change notification settings

tensorflow/recommenders

Repository files navigation

TensorFlow Recommenders logo

TensorFlow Recommenders build badgePyPI badge

TensorFlow Recommenders is a library for building recommender system modelsusingTensorFlow.

It helps with the full workflow of building a recommender system: datapreparation, model formulation, training, evaluation, and deployment.

It's built on Keras and aims to have a gentle learning curve while still givingyou the flexibility to build complex models.

Installation

Make sure you have TensorFlow 2.x installed, and install frompip:

pip install tensorflow-recommenders

Documentation

Have a look at ourtutorials andAPI reference.

Quick start

Building a factorization model for the Movielens 100K dataset is very simple(Colab):

fromtypingimportDict,Textimporttensorflowastfimporttensorflow_datasetsastfdsimporttensorflow_recommendersastfrs# Ratings data.ratings=tfds.load('movielens/100k-ratings',split="train")# Features of all the available movies.movies=tfds.load('movielens/100k-movies',split="train")# Select the basic features.ratings=ratings.map(lambdax: {"movie_id":tf.strings.to_number(x["movie_id"]),"user_id":tf.strings.to_number(x["user_id"])})movies=movies.map(lambdax:tf.strings.to_number(x["movie_id"]))# Build a model.classModel(tfrs.Model):def__init__(self):super().__init__()# Set up user representation.self.user_model=tf.keras.layers.Embedding(input_dim=2000,output_dim=64)# Set up movie representation.self.item_model=tf.keras.layers.Embedding(input_dim=2000,output_dim=64)# Set up a retrieval task and evaluation metrics over the# entire dataset of candidates.self.task=tfrs.tasks.Retrieval(metrics=tfrs.metrics.FactorizedTopK(candidates=movies.batch(128).map(self.item_model)        )    )defcompute_loss(self,features:Dict[Text,tf.Tensor],training=False)->tf.Tensor:user_embeddings=self.user_model(features["user_id"])movie_embeddings=self.item_model(features["movie_id"])returnself.task(user_embeddings,movie_embeddings)model=Model()model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))# Randomly shuffle data and split between train and test.tf.random.set_seed(42)shuffled=ratings.shuffle(100_000,seed=42,reshuffle_each_iteration=False)train=shuffled.take(80_000)test=shuffled.skip(80_000).take(20_000)# Train.model.fit(train.batch(4096),epochs=5)# Evaluate.model.evaluate(test.batch(4096),return_dict=True)

About

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp