|
775 | 775 | 3621 |[Number of Integers With Popcount-Depth Equal to K I](https://leetcode.com/problems/number-of-integers-with-popcount-depth-equal-to-k-i/) |[C++](./C++/number-of-integers-with-popcount-depth-equal-to-k-i.cpp)[Python](./Python/number-of-integers-with-popcount-depth-equal-to-k-i.py) | precompute:_O((logr)^2)_<br>runtime:_O((logn)^2)_ |_O((logr)^2)_ | Hard | | Combinatorics | |
776 | 776 | 3622 |[Check Divisibility by Digit Sum and Product](https://leetcode.com/problems/check-divisibility-by-digit-sum-and-product/) |[C++](./C++/check-divisibility-by-digit-sum-and-product.cpp)[Python](./Python/check-divisibility-by-digit-sum-and-product.py) |_O(logn)_ |_O(1)_ | Easy | | Math | |
777 | 777 | 3623 |[Count Number of Trapezoids I](https://leetcode.com/problems/count-number-of-trapezoids-i/) |[C++](./C++/count-number-of-trapezoids-i.cpp)[Python](./Python/count-number-of-trapezoids-i.py) |_O(n)_ |_O(n)_ | Medium | | Freq Table, Combinatorics | |
778 | | -3624 |[Number of Integers With Popcount-Depth Equal to K II](https://leetcode.com/problems/number-of-integers-with-popcount-depth-equal-to-k-ii/) |[C++](./C++/number-of-integers-with-popcount-depth-equal-to-k-ii.cpp)[Python](./Python/number-of-integers-with-popcount-depth-equal-to-k-ii.py) | precompute:_O((logr) * log(logr) + log*(r) * (logr))_<br>runtime:_O(nlogr + max_k * n + nlogn + qlogn)_ |_O(logr + max_k * n)_ | Hard | |Combinatorics | |
| 778 | +3624 |[Number of Integers With Popcount-Depth Equal to K II](https://leetcode.com/problems/number-of-integers-with-popcount-depth-equal-to-k-ii/) |[C++](./C++/number-of-integers-with-popcount-depth-equal-to-k-ii.cpp)[Python](./Python/number-of-integers-with-popcount-depth-equal-to-k-ii.py) | precompute:_O((logr) * log(logr))_<br>runtime:_O(nlogr + max_k * n + nlogn + qlogn)_ |_O(logr + max_k * n)_ | Hard | |BIT, Fenwick Tree | |
779 | 779 | 3625 |[Count Number of Trapezoids II](https://leetcode.com/problems/count-number-of-trapezoids-ii/) |[C++](./C++/count-number-of-trapezoids-ii.cpp)[Python](./Python/count-number-of-trapezoids-ii.py) |_O(n^2 * logr)_ |_O(n^2)_ | Hard | | Freq Table, Combinatorics | |
780 | 780 |
|
781 | 781 | <br/> |
|