|
| 1 | +# Time: precompute: O((logr)^2), , r = max(n) |
| 2 | +# runtime: O(nlogr + max_k * n + nlogn + qlogn) |
| 3 | +# Space: O(logr + max_k * n) |
| 4 | + |
| 5 | +# fenwick tree |
| 6 | +defpopcount(x): |
| 7 | +returnbin(x).count('1') |
| 8 | + |
| 9 | + |
| 10 | +classBIT(object):# 0-indexed. |
| 11 | +def__init__(self,n): |
| 12 | +self.__bit= [0]*(n+1)# Extra one for dummy node. |
| 13 | + |
| 14 | +defadd(self,i,val): |
| 15 | +i+=1# Extra one for dummy node. |
| 16 | +whilei<len(self.__bit): |
| 17 | +self.__bit[i]+=val |
| 18 | +i+= (i&-i) |
| 19 | + |
| 20 | +defquery(self,i): |
| 21 | +i+=1# Extra one for dummy node. |
| 22 | +ret=0 |
| 23 | +whilei>0: |
| 24 | +ret+=self.__bit[i] |
| 25 | +i-= (i&-i) |
| 26 | +returnret |
| 27 | + |
| 28 | + |
| 29 | +MAX_N=10**15 |
| 30 | +MAX_BIT_LEN=MAX_N.bit_length() |
| 31 | +D= [0]*(MAX_BIT_LEN+1) |
| 32 | +foriinxrange(2,MAX_BIT_LEN+1): |
| 33 | +D[i]=D[popcount(i)]+1 |
| 34 | +MAX_K=0 |
| 35 | +prev=-1 |
| 36 | +whileMAX_N!=prev: |
| 37 | +prev=MAX_N |
| 38 | +MAX_N=MAX_N.bit_length() |
| 39 | +MAX_K+=1 |
| 40 | +classSolution(object): |
| 41 | +defpopcountDepth(self,nums,queries): |
| 42 | +""" |
| 43 | + :type nums: List[int] |
| 44 | + :type queries: List[List[int]] |
| 45 | + :rtype: List[int] |
| 46 | + """ |
| 47 | +defcount(x): |
| 48 | +returnD[popcount(x)]+1ifx!=1else0 |
| 49 | + |
| 50 | +bit= [BIT(len(nums))for_inxrange(MAX_K+1)] |
| 51 | +foriinxrange(len(nums)): |
| 52 | +bit[count(nums[i])].add(i,+1) |
| 53 | +result= [] |
| 54 | +forqinqueries: |
| 55 | +ifq[0]==1: |
| 56 | +_,l,r,k=q |
| 57 | +assert(k<len(bit)) |
| 58 | +result.append(bit[k].query(r)-bit[k].query(l-1)) |
| 59 | +else: |
| 60 | +_,i,x=q |
| 61 | +old_d=count(nums[i]) |
| 62 | +new_d=count(x) |
| 63 | +ifnew_d!=old_d: |
| 64 | +bit[old_d].add(i,-1) |
| 65 | +bit[new_d].add(i,+1) |
| 66 | +nums[i]=x |
| 67 | +returnresult |