- Notifications
You must be signed in to change notification settings - Fork1k
This part describes the STM32 core functions.
This was introduced core version greater than1.5.0.It is based on Semantic Versioning 2.0.0 (https://semver.org/).
This ease core dependencies and definedhere.
STM32_CORE_VERSION
defines the core version with:
STM32_CORE_VERSION_MAJOR
: major version [31:24]STM32_CORE_VERSION_MINOR
: minor version [23:16]STM32_CORE_VERSION_PATCH
: patch version [15:8]STM32_CORE_VERSION_EXTRA
: Extra label [7:0]with:0
: official release[1-9]
: release candidateF[0-9]
: development
#if !defined(STM32_CORE_VERSION)|| (STM32_CORE_VERSION <=0x01050000)/* Do something for core version lesser than or equal to 1.5.0 */#else/* Do something for core version greater than 1.5.0 */#endif
CoreCallback functions allows to register a callback function called in the loop of themain()
function.If you need to call as often as possible a function to update your system and you want to be sure this function to be called, you can add it to the callback list. Otherwise, your function should be called inside theloop()
function ofthe sketch.
void registerCoreCallback(void (*func)(void))
: register a callback function
Paramsfunc
pointer to the callback functionvoid unregisterCoreCallback(void (*func)(void))
: unregister a callback function
Paramsfunc
pointer to the callback function
Warning
By default, the core callback feature is disabled, to enable itCORE_CALLBACK
must be defined.
build_opt.h
can be used to define it by adding-DCORE_CALLBACK
.
analogWrite()
function follows theAPI reference.As each pin has not the same capabilities, it uses the best way:
- True analog output when using on pins with DAC capabilities anf if
HAL_DAC_MODULE_ENABLED
is defined - PWM on pins with timer (TIM) capabilities.
- GPIO toggling HIGH/LOW depending on requested value:
HIGH
if > 127 elseLOW
analogWriteFrequency(freq)
has been added in core version greater than1.5.0 to set the frequency used byanalogWrite()
. Default isPWM_FREQUENCY
(1000) in Hertz.
Note
frequency is common to all channels of a specified timer, setting the frequency for one channel will impact all others of the same timer.
// Assuming Ax pins have PWM capabilities and use a different Timer.analogWrite(A1,127);// Start PWM on A1, at 1000 Hz with 50% duty cycleanalogWriteFrequency(2000);// Set PWM period to 2000 Hz instead of 1000analogWrite(A2,64);// Start PWM on A2, at 2000 Hz with 25% duty cycleanalogWriteFrequency(500);// Set PWM period to 500 HzanalogWrite(A3,192);// Start PWM on A3, at 500 Hz with 75% duty cycle
Note
Available since version 2.8.0, thanks#2309.
It is now possible to disable the DAC output buffer (which is enabled by default) by definingDISABLE_DAC_OUTPUTBUFFER
using one of the below options:
- hal_conf_extra.h
build_opt.h
- header file of the variant:
variant_<boardname>.h
Available in core version greater than1.5.0
analogRead()
can now be used to read some internal channels with the following definitions:
ATEMP
: internal temperature sensorAVREF
: VrefInt, internal voltage referenceAVBAT
: Vbat voltage
A minimum ADC sampling time is required when reading internal channels so default is set it to max possible value. It can be defined more precisely by defining:
ADC_SAMPLINGTIME_INTERNAL
to the desired ADC sample time.
ADC_SAMPLINGTIME
andADC_CLOCK_DIV
could also be redefined by the variant or usingbuild_opt.h
.
An example which read then convert to proper Unit the 3 internal channels + A0 is provided withSTM32Examples library:Internal_channels
Warning
This example is provided "as it" and can require some update mainly for datasheet values.
The STM32 MCU's have severalU(S)ART peripherals. By convenience, theU(S)ARTx number is used to define theSerialx
instance:
Serial1
forUSART1
Serial2
forUSART2
Serial3
forUSART3
Serial4
forUART4
- ...For
LPUART1
this isSerialLP1
By default, only oneSerialx
instance is available mapped to the genericSerial
name.
To use a second serial port, aHardwareSerial
object should be declared in the sketch before thesetup()
function:
// RX TXHardwareSerialSerial1(PA10, PA9);voidsetup() { Serial1.begin(115200); }voidloop() { Serial1.println("Hello World!");delay(1000);}
Another solution is to add abuild_opt.h
file alongside your main.ino
file with:-DENABLE_HWSERIALx
.This will define theSerialx
instance using the firstUSARTx
instance found in thePeripheralPins.c
of your variant.
Note
that only the latter solution allows to use theserialEventx()
callback in the sketch.
For Example, if you define in thebuild_opt.h
:-DENABLE_HWSERIAL3
This will instantiateSerial3
with the first Rx and Tx pins found in thePinMap_UART_RX[]
andPinMap_UART_TX[]
arrays in thePeripheralPins.c
of your variant and theserialEvent3()
will be enabled.
To specify which Rx or Tx pins should be used instead of the first one found, you can specified thePIN_SERIALn_RX
orPIN_SERIALn_TX
wheren is the number of the Serial instance.
Example for theSerial3
:
- In the
variant.h
:
#definePIN_SERIAL3_RX PB11#definePIN_SERIAL3_TX PB10
- In the
build_opt.h
:-DPIN_SERIAL3_RX=PB11 -DPIN_SERIAL3_TX=PB10
It is also possible to change the default pins used by theSerial
instance using above API:
void setRx(uint32_t rx)
void setTx(uint32_t tx)
void setRx(PinName rx)
void setTx(PinName tx)
Warning
Have to be called beforebegin()
.
Serial.setRx(PG_9);// using pin name PY_n Serial.setTx(PG14);// using pin number PYn Serial.begin(9600);
Available in core version greater than1.7.0
It is now possible to set aHardwareSerial
in half-duplex mode.
TheU(S)ART
can be configured to follow a single-wire half-duplex protocol where the Tx and Rx lines are internally connected. In this communication mode, only the Tx pin is used for both transmission and reception.
Extended
HardwareSerial
constructors:HardwareSerial(uint32_t _rxtx)
: U(S)ART Tx pin number (PYn
) used for half-duplexHardwareSerial(PinName _rxtx)
: U(S)ART Tx pin name (PY_n
) used for half-duplex- if
Rx == Tx
then assume half-duplex mode:HardwareSerial(uint32_t _rx, uint32_t _tx)
: U(S)ART Tx pin number (PYn
) used for half-duplexHardwareSerial(PinName _rx, PinName tx)
: U(S)ART Tx pin name (PY_n
) used for half-duplex
HardwareSerial(void *peripheral, HalfDuplexMode_t halfDuplex = HALF_DUPLEX_DISABLED)
: ifHALF_DUPLEX_ENABLED
get the first Tx pin for requested peripheral in thePeripheralPins.c
used for half-duplex
Add
enableHalfDuplexRx()
to enable Serial in Rx mode. Doing aread()
could be used but will avoid to perform a read. Useful beforeavailable()
usagevoid setHalfDuplex()
: enable half-duplex mode of an instance when it not instantiate in half-duplex mode. Must be call beforebegin()
in this case.
Serial4
sends byte toSerial3
, compare values thenSerial3
resend it toSerial4
and compare.Require to connectPA0
and PB10
.
All possible constructor are listed.
HardwareSerialSerial3(PA0);HardwareSerialSerial4(PB10);//HardwareSerial Serial3(PA_0);//HardwareSerial Serial4(PB_10);//HardwareSerial Serial3(UART4, HALF_DUPLEX_ENABLED);//HardwareSerial Serial4(USART3, HALF_DUPLEX_ENABLED);//HardwareSerial Serial3(PA0, PA0);//HardwareSerial Serial4(PB10, PB10);//HardwareSerial Serial3(PA_0, PA_0);//HardwareSerial Serial4(PB_10, PB_10);//HardwareSerial Serial3(NC, PA_0);//HardwareSerial Serial4(NC, PB_10);//HardwareSerial Serial3(NUM_DIGITAL_PINS, PA0);//HardwareSerial Serial4(NUM_DIGITAL_PINS, PB10);staticuint32_t nbTestOK =0;staticuint32_t nbTestKO =0;voidtest_uart(int val){int recval = -1;uint32_t error =0; Serial4.write(val);delay(10);while (Serial3.available()) { recval = Serial3.read(); }/* Enable Serial4 to RX*/ Serial4.enableHalfDuplexRx();if (val == recval) { Serial3.write(val);delay(10);while (Serial4.available()) { recval = Serial4.read(); }/* Enable Serial3 to RX*/ Serial3.enableHalfDuplexRx();if (val == recval) { nbTestOK++; Serial.print("Exchange: 0x"); Serial.println(recval, HEX); }else { error =2; } }else { error =1; }if (error) { Serial.print("Send: 0x"); Serial.print(val, HEX); Serial.print("\tReceived: 0x"); Serial.print(recval, HEX); Serial.print(" --> KO <--"); Serial.println(error); nbTestKO++; }}voidsetup() { Serial.begin(115200); Serial4.begin(9600); Serial3.begin(9600);}voidloop() {for (uint32_t i =0; i <= (0xFF); i++) {test_uart(i); } Serial.println("Serial Half-Duplex test done.\nResults:"); Serial.print("OK:"); Serial.println(nbTestOK); Serial.print("KO:"); Serial.println(nbTestKO);while (1);}
Note
Serial Rx/TX buffer size can be changed, seecustom definitions
Available in core version2.3.0 or later
HardwareSerial
constructors accept optional RTS/CTS pins:HardwareSerial(uint32_t _rx, uint32_t _tx, uint32_t _rts = NUM_DIGITAL_PINS, uint32_t _cts = NUM_DIGITAL_PINS)
HardwareSerial(PinName _rx, PinName _tx, PinName _rts = NC, PinName _cts = NC)
- You can also enable RTS/CTS pins on
HardwareSerial
instances:void setRts(uint32_t _rts)
void setCts(uint32_t _cts)
void setRtsCts(uint32_t _rts, uint32_t _cts)
void setRts(PinName _rts)
void setCts(PinName _cts)
void setRtsCts(PinName _rts, PinName _cts)
// Enable hardware flow control on construction.HardwareSerialserial(PA10, PA9, PA12, PA11);// Or, enable later (but before calling begin()).HardwareSerialserial(PA10, PA9);serial.setRtsCts(PA12, PA11);serial.begin(460800);
Available in core version greater than2.10.1
The U(S)ART Tx and Rx pin signal values can be inverted (VDD = 0/mark, Gnd = 1/idle), and the U(S)ART can send and receive data in negative/inverse logic (1 = L, 0 = H); theparity bit is also inverted.
- Enable Tx and Rx active level inversion on
HardwareSerial
instances, respectively:void setTxInvert(void)
void setRxInvert(void)
- Enable data inversion on
HardwareSerial
instances:void setDataInvert(void)
This part describes the STM32 libraries provided with the core.
STM32 SPI library has been modified with the possibility to manage hardware CS pin linked to the SPI peripheral.We do not describe here theSPI Arduino API but the functionalities added.
User have 2 possibilities about the management of the CS pin:
- the CS pin is managed directly by the user code before to transfer the data (like the Arduino SPI library)
- the user uses a hardware CS pin linked to the SPI peripheral
noReceive
: value can beSPI_TRANSMITRECEIVE
orSPI_TRANSMITONLY
. It allows to skip receive data after transmitting.
SPIClass::SPIClass(uint8_t mosi, uint8_t miso, uint8_t sclk, uint8_t ssel)
: alternative class constructor
Params SPImosi
pin
Params SPImiso
pin
Params SPIsclk
pin
Params (optional) SPIssel
pin. This pin must be an hardware CS pin. If you configure this pin, the chip select will be managed by the SPI peripheral.
This is an example of the use of the hardware CS pin linked to the SPI peripheral:
#include<SPI.h>// MOSI MISO SCLK SSELSPIClassSPI_3(PC12, PC11, PC10, PC9);voidsetup() { SPI_3.begin();// Enable the SPI_3 instance with default SPISsettings SPI_3.beginTransaction(settings);// Configure the SPI_3 instance with other settings SPI_3.transfer(0x52);// Transfers data to the first device SPI_3.end()//SPI_3 instance is disabled}
It is also possible to change the default pins used by theSPI
instance using above API:
Warning
Have to be called beforebegin()
.
void setMISO(uint32_t miso)
void setMOSI(uint32_t mosi)
void setSCLK(uint32_t sclk)
void setSSEL(uint32_t ssel)
void setMISO(PinName miso)
void setMOSI(PinName mosi)
void setSCLK(PinName sclk)
void setSSEL(PinName ssel)
Note
UsingsetSSEL()
allows to enable hardware CS pin management linked to the SPI peripheral.
SPI.setMISO(PC_4);// using pin name PY_n SPI.setMOSI(PC2);// using pin number PYn SPI.begin(2);
By default, only oneWire
instance is available and it uses the Arduino pins D14(SDA) and D15(SCL).To use a second I2C port, aTwoWire
object should be declared in the sketch before thesetup()
function:
#include<Wire.h>// SDA SCLTwoWireWire2(PB3, PB10);voidsetup() { Wire2.begin(); }voidloop() { Wire2.beginTransmission(0x71); Wire2.write('v'); Wire2.endTransmission();delay(1000);}
Refers toI2C Timing to customize I2C speed if needed.
The default I2C interface pins are configured inside the PeripheralPins.c file.
#ifdef HAL_I2C_MODULE_ENABLED WEAKconst PinMap PinMap_I2C_SDA[] = { {PA_10, I2C1,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C1)}, {PB_4, I2C3,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C3)}, {PB_7, I2C1,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C1)},// {PB_7, I2C4, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF5_I2C4)}, {PB_9, I2C1,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C1)}, {PB_11, I2C2,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C2)},// {PB_11, I2C4, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF3_I2C4)}, {PB_14, I2C2,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C2)},// {PC_1, I2C3, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C3)}, {PC_1, I2C4,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_I2C4)}, {NC, NP,0} }; #endif #ifdef HAL_I2C_MODULE_ENABLED WEAKconst PinMap PinMap_I2C_SCL[] = { {PA_7, I2C3,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C3)}, {PA_9, I2C1,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C1)},// {PB_6, I2C1, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C1)}, {PB_6, I2C4,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF5_I2C4)}, {PB_8, I2C1,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C1)}, {PB_10, I2C2,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C2)},// {PB_10, I2C4, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF3_I2C4)}, {PB_13, I2C2,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C2)},// {PC_0, I2C3, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF4_I2C3)}, {PC_0, I2C4,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_I2C4)}, {NC, NP,0} }; #endif
Because they are defined as WEAK, you can redefine them in your sketch file instead of changing values in the PeripheralPins.c file.You can also enable/disable the internal pull-ups with the second parameter of STM_PIN_DATA().
const PinMap PinMap_I2C_SDA[] = { {PB_9, I2C1,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULLUP, GPIO_AF4_I2C1)}, {PC_1, I2C4,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_PULLUP, GPIO_AF2_I2C4)}, {NC, NP,0}};const PinMap PinMap_I2C_SCL[] = { {PB_8, I2C1,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULLUP, GPIO_AF4_I2C1)}, {PC_0, I2C4,STM_PIN_DATA(STM_MODE_AF_OD, GPIO_PULLUP, GPIO_AF2_I2C4)}, {NC, NP,0}};
It is also possible to change the default pins used by theWire
instance using above API:
void setSCL(uint32_t scl)
void setSDA(uint32_t sda)
void setSCL(PinName scl)
void setSDA(PinName sda)
Warning
Have to be called beforebegin()
.
Wire.setSDA(PC_4);// using pin name PY_n Wire.setSCL(PC2);// using pin number PYn Wire.begin();
Available in core version greater than1.5.0
Addingtrue
as last parameters of the 3Wire::begin()
methods will enable the general call mode otherwisefalse
per default:
void begin(bool generalCall = false)
void begin(uint8_t, bool generalCall = false)
void begin(int, bool generalCall = false)
Wire.begin(true);
orWire.begin(0x70,true);
By default I2C buffers are all aligned on Arduino API:32 bytes.
Nevertheless it is possible to transfer up to255 bytes:
In master mode: RX and TX buffers will automatically grow when needed, independently one from each other, and independently from other I2C instances.
Nothing to do from application point of view.
Warning: a bug in STM32 cube HAL (STM32 core v1.8.0) prevents to transfer exactly 255 bytes. (see#853)In slave mode: RX and TX buffer size can be statically redefined usinghal_conf_extra.h or
build_opt.h
(at compilation time) thanks to switchI2C_TXRX_BUFFER_SIZE
(see#853)
All I2C instances are impacted by change of this compilation switch.
Available in core version greater than1.7.0
CMSIS DSP software library, is a suite of common signal processing functions for use on Cortex-M processor based devices.
The library is divided into a number of functions each covering a specific category:
- Basic math functions
- Fast math functions
- Complex math functions
- Filters
- Matrix functions
- Transform functions
- Motor control functions
- Statistical functions
- Support functions
- Interpolation functions.
The library has separate functions for operating on 8-bit integers, 16-bit integers, 32-bit integer and 32-bit floating-point value.
More info:https://arm-software.github.io/CMSIS_5/DSP/html/index.html
To use it, add: #include <CMSIS_DSP.h>
arm_math.h
is then automatically include.
EEPROM emulation is based on Arduino API:https://docs.arduino.cc/learn/built-in-libraries/eeprom/
Emulation is made in Flash, with all constraints related to Flash operation:
- whole sector/page erased and written for each write operation.
Can be very long depending on sector/page size - limited Flash life cycle write operation
In addition to Arduino API, to mitigate Flash constraints, it is possible to use buffered API:
Write operations are made in an intermediate RAM buffer, and only at the end (after writing several parameters for example) the buffer is copied in Flash. Thus only 1 write operation for a whole bunch of data.
Example is available here:https://github.com/stm32duino/STM32Examples/tree/main/examples/NonReg/BufferedEEPROM
voideeprom_buffer_fill();// This function copies the data from flash into the buffervoideeprom_buffer_flush();// This function writes the buffer content into the flashuint8_teeprom_buffered_read_byte(constuint32_tpos);// Function reads a byte from the eeprom buffervoideeprom_buffered_write_byte(uint32_tpos,uint8_tvalue);// Function writes a byte to the eeprom buffer
By default, EEPROM emulation storage correspond to the last sector/page of Flash,
and its size correspond to the size of the last sector/page.
Nevertheless it is possible to customize address and size used for EEPROM.
In this case, following switches should be defined (in variant.h orbuild_opt.h
)
FLASH_BASE_ADDRESS
FLASH_DATA_SECTOR
orFLASH_PAGE_NUMBER
(depending on STM32 family used)
see example of variant implementation:#938
Warning
Single/dual bank configuration:
Default last sector used correspond to default board configuration.
For example, NUCLEO_F767ZI is by default configured in single bank. Last sector correspond to this bank configuration.If this configuration is changed, it is then mandatory to customizeFLASH_BASE_ADDRESS
/FLASH_DATA_SECTOR
,even to use last sector of Flash.
Since core version 1.9.0 (see#996), it is possible to mark variables as "noinit", which prevents them from being initialized to a fixed value at startup. This allows using these variables to remember a value across resets (since the reset itself leaves memory unchanged, it is only the startup code that normally resets all variable values, but that is prevented by noinit).
To do this, the variable must be placed in the.noinit
section by adding__attribute__((__section__(".noinit")))
(this is exactly the same as how this works on the original Arduino AVR core). Typically, you would also need to check the startup reason register so you can initialize the variable with a default on the first startup. For example, something like:
unsigned boot_count__attribute__((__section__(".noinit")));voidsetup() { Serial.begin(115200);while (!Serial);// Wait for serial port open// Initialize the variable only on first power-on resetif (__HAL_RCC_GET_FLAG(RCC_FLAG_BORRST)) boot_count =1;__HAL_RCC_CLEAR_RESET_FLAGS(); Serial.print("Boot number:"); Serial.println(boot_count); ++boot_count;}voidloop() { }
This shows the number of boots since the last POR by incrementing a noinit variable across resets. Note that when you first upload this, it might not start at 1 but at some arbitrary value, because typically the first boot after an upload is not a power-on-reset. To start at 1, disconnect and reconnect power.