Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Code for our paper "DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection".

License

NotificationsYou must be signed in to change notification settings

braun-steven/DAFNe

Repository files navigation

Code for our PaperDAFNe: A One-Stage Anchor-Free Approach for Oriented Object Detection.

PWC
PWC
PWC

Datasets

Docker Setup

Use theDockerfile to build the necessary docker image:

docker build -t dafne.

Training

Check out./configs/pre-trained/ for different pre-defined configurations for the DOTA 1.0, DOTA 1.5, UCAS-AOD, and HRSC2016 datasets. Use these paths as argument for the--config-file option below.

With Docker

Use the./tools/run.py helper to start running experiments

./tools/run.py --gpus 0,1,2,3 --config-file ./configs/dota-1.0/1024.yaml

Without Docker

NVIDIA_VISIBLE_DEVICES=0,1,2,3 ./tools/plain_train_net.py --num-gpus 4 --config-file ./configs/dota-1.0/1024.yaml

Pre-Trained Weights

DatasetmAP (%)ConfigWeights
UCAS-AOD89.65ucas_aod_r101_msucas-aod-r101-ms.pth
HRSC201689.76hrsc_r50_mshrsc-r50-ms.pth
DOTA 1.076.95dota-1.0_r101_msdota-1.0-r101-ms.pth
DOTA 1.571.99dota-1.5_r101_msdota-1.5-r101-ms.pth

Pre-Trained Weights Usage with Docker

./tools/run.py --gpus 0 --config-file<CONFIG_PATH> --opts"MODEL.WEIGHTS <WEIGHTS_PATH>"

Pre-Trained Weights Usage without Docker

NVIDIA_VISIBLE_DEVICES=0 ./tools/plain_train_net.py --num-gpus 1 --config-file<CONFIG_PATH> MODEL.WEIGHTS<WEIGHTS_PATH>

Cite

@misc{lang2021dafne,title={DAFNe: A One-Stage Anchor-Free Approach for Oriented Object Detection},author={Steven Lang and Fabrizio Ventola and Kristian Kersting},year={2021},eprint={2109.06148},archivePrefix={arXiv},primaryClass={cs.CV}}

Acknowledgments

  • Thanks toAdelaiDet for providing the initial FCOS implementation
  • Thanks toDetectron2 for providing a general object detection framework

About

Code for our paper "DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection".

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp