- Notifications
You must be signed in to change notification settings - Fork12
Code for our paper "DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection".
License
NotificationsYou must be signed in to change notification settings
braun-steven/DAFNe
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
Code for our PaperDAFNe: A One-Stage Anchor-Free Approach for Oriented Object Detection.
- UCAS-AOD:https://hyper.ai/datasets/5419
- DOTA 1.0/1.5:https://captain-whu.github.io/DOTA/index.html
- Note: See./tools/prepare_dota/ for instructions on how to prepare the DOTA datasets.
- HRSC2016:https://www.kaggle.com/guofeng/hrsc2016
Use theDockerfile to build the necessary docker image:
docker build -t dafne.Check out./configs/pre-trained/ for different pre-defined configurations for the DOTA 1.0, DOTA 1.5, UCAS-AOD, and HRSC2016 datasets. Use these paths as argument for the--config-file option below.
Use the./tools/run.py helper to start running experiments
./tools/run.py --gpus 0,1,2,3 --config-file ./configs/dota-1.0/1024.yaml
NVIDIA_VISIBLE_DEVICES=0,1,2,3 ./tools/plain_train_net.py --num-gpus 4 --config-file ./configs/dota-1.0/1024.yaml
| Dataset | mAP (%) | Config | Weights |
|---|---|---|---|
| UCAS-AOD | 89.65 | ucas_aod_r101_ms | ucas-aod-r101-ms.pth |
| HRSC2016 | 89.76 | hrsc_r50_ms | hrsc-r50-ms.pth |
| DOTA 1.0 | 76.95 | dota-1.0_r101_ms | dota-1.0-r101-ms.pth |
| DOTA 1.5 | 71.99 | dota-1.5_r101_ms | dota-1.5-r101-ms.pth |
./tools/run.py --gpus 0 --config-file<CONFIG_PATH> --opts"MODEL.WEIGHTS <WEIGHTS_PATH>"
NVIDIA_VISIBLE_DEVICES=0 ./tools/plain_train_net.py --num-gpus 1 --config-file<CONFIG_PATH> MODEL.WEIGHTS<WEIGHTS_PATH>
@misc{lang2021dafne,title={DAFNe: A One-Stage Anchor-Free Approach for Oriented Object Detection},author={Steven Lang and Fabrizio Ventola and Kristian Kersting},year={2021},eprint={2109.06148},archivePrefix={arXiv},primaryClass={cs.CV}}
- Thanks toAdelaiDet for providing the initial FCOS implementation
- Thanks toDetectron2 for providing a general object detection framework
About
Code for our paper "DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection".
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
No releases published
Packages0
No packages published
Uh oh!
There was an error while loading.Please reload this page.
