- Notifications
You must be signed in to change notification settings - Fork0
License
NotificationsYou must be signed in to change notification settings
ssbuild/visualglm_finetuning
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
2024-04-22 简化 2023-10-18 微调推理测试初步完成 2023-10-17 initial visualglm_finetuning
- pip install -U -r requirements.txt
- 如果无法安装 , 可以切换官方源 pip install -ihttps://pypi.org/simple -U -r requirements.txt
open_datahttps://github.com/ssbuild/open_data
单条数据示例
p prefix optionalq question optionala answer must
{"id":1,"paragraph": [{"q":"<img>../assets/demo.jpeg</img>\n图中的狗是什么品种?","a":"图中是一只拉布拉多犬。"}]}
或者
{"id":0,"conversations": [ {"from":"user","value":"<img>../assets/demo.jpeg</img>\n图中的狗是什么品种?" }, {"from":"assistant","value":"图中是一只拉布拉多犬。" } ]}
# infer.py 推理预训练模型# infer_finetuning.py 推理微调模型# infer_lora_finetuning.py 推理lora微调模型 python infer.py
量化等级 | 最低 GPU 显存 |
---|---|
FP16(无量化) | 13 GB |
INT8 | 10 GB |
INT4 | 6 GB |
# 制作数据 cd scripts bash train_full.sh -m dataset or bash train_lora.sh -m dataset or bash train_ptv2.sh -m dataset 注: num_process_worker 为多进程制作数据 , 如果数据量较大 , 适当调大至cpu数量 dataHelper.make_dataset_with_args(data_args.train_file,mixed_data=False, shuffle=True,mode='train',num_process_worker=0) # 全参数训练 bash train_full.sh -m train # lora adalora ia3 bash train_lora.sh -m train # ptv2 bash train_ptv2.sh -m train
- pytorch-task-example
- chatmoss_finetuning
- chatglm_finetuning
- chatglm2_finetuning
- t5_finetuning
- llm_finetuning
- llm_rlhf
- chatglm_rlhf
- t5_rlhf
- rwkv_finetuning
- baichuan_finetuning
- baichuan2_finetuning
- xverse_finetuning
- aigc_serving
- aigc_evals
纯粹而干净的代码
https://github.com/THUDM/VisualGLM-6B