Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A PyTorch-based Speech Toolkit

License

NotificationsYou must be signed in to change notification settings

speechbrain/speechbrain

SpeechBrain Logo

Typing SVG

| 📘Tutorials | 🌐Website | 📚Documentation | 🤝Contributing | 🤗HuggingFace |▶️YouTube | 🐦X |

GitHub Repo starsPlease, help our community project. Star on GitHub!

Exciting News (January, 2024): Discover what is new in SpeechBrain 1.0here!

🗣️💬 What SpeechBrain Offers

  • SpeechBrain is anopen-sourcePyTorch toolkit that acceleratesConversational AI development, i.e., the technology behindspeech assistants,chatbots, andlarge language models.

  • It is crafted for fast and easy creation of advanced technologies forSpeech andText Processing.

🌐 Vision

  • With the rise ofdeep learning, once-distant domains like speech processing and NLP are now very close. A well-designed neural network and large datasets are all you need.

  • We think it is now time for aholistic toolkit that, mimicking the human brain, jointly supports diverse technologies for complex Conversational AI systems.

  • This spansspeech recognition,speaker recognition,speech enhancement,speech separation,language modeling,dialogue, and beyond.

  • Aligned with our long-term goal of natural human-machine conversation, including for non-verbal individuals, we have recently added support for theEEG modality.

📚 Training Recipes

  • We share over 200 competitive trainingrecipes on more than 40 datasets supporting 20 speech and text processing tasks (see below).

  • We support both training from scratch and fine-tuning pretrained models such asWhisper,Wav2Vec2,WavLM,Hubert,GPT2,Llama2, and beyond. The models onHuggingFace can be easily plugged in and fine-tuned.

  • For any task, you train the model using these commands:

pythontrain.pyhparams/train.yaml
  • The hyperparameters are encapsulated in a YAML file, while the training process is orchestrated through a Python script.

  • We maintained a consistent code structure across different tasks.

  • For better replicability, training logs and checkpoints are hosted on Dropbox.

drawing Pretrained Models and Inference

  • Access over 100 pretrained models hosted onHuggingFace.
  • Each model comes with a user-friendly interface for seamless inference. For example, transcribing speech using a pretrained model requires just three lines of code:
fromspeechbrain.inferenceimportEncoderDecoderASRasr_model=EncoderDecoderASR.from_hparams(source="speechbrain/asr-conformer-transformerlm-librispeech",savedir="pretrained_models/asr-transformer-transformerlm-librispeech")asr_model.transcribe_file("speechbrain/asr-conformer-transformerlm-librispeech/example.wav")

drawing Documentation

  • We are deeply dedicated to promoting inclusivity and education.
  • We have authored over 30tutorials that not only describe how SpeechBrain works but also help users familiarize themselves with Conversational AI.
  • Every class or function has clear explanations and examples that you can run. Check out thedocumentation for more details 📚.

🎯 Use Cases

  • 🚀Research Acceleration: Speeding up academic and industrial research. You can develop and integrate new models effortlessly, comparing their performance against our baselines.

  • ⚡️Rapid Prototyping: Ideal for quick prototyping in time-sensitive projects.

  • 🎓Educational Tool: SpeechBrain's simplicity makes it a valuable educational resource. It is used by institutions likeMila,Concordia University,Avignon University, and many others for student training.

🚀 Quick Start

To get started with SpeechBrain, follow these simple steps:

🛠️ Installation

Install via PyPI

  1. Install SpeechBrain using PyPI:

    pip install speechbrain
  2. Access SpeechBrain in your Python code:

    importspeechbrainassb

Install from GitHub

This installation is recommended for users who wish to conduct experiments and customize the toolkit according to their needs.

  1. Clone the GitHub repository and install the requirements:

    git clone https://github.com/speechbrain/speechbrain.gitcd speechbrainpip install -r requirements.txtpip install --editable.
  2. Access SpeechBrain in your Python code:

    importspeechbrainassb

Any modifications made to thespeechbrain package will be automatically reflected, thanks to the--editable flag.

✔️ Test Installation

Ensure your installation is correct by running the following commands:

pytest testspytest --doctest-modules speechbrain

🏃‍♂️ Running an Experiment

In SpeechBrain, you can train a model for any task using the following steps:

cdrecipes/<dataset>/<task>/pythonexperiment.pyparams.yaml

The results will be saved in theoutput_folder specified in the YAML file.

📘 Learning SpeechBrain

  • Website: Explore general information on theofficial website.

  • Tutorials: Start withbasic tutorials covering fundamental functionalities. Find advanced tutorials and topics in the Tutorial notebooks category in theSpeechBrain documentation.

  • Documentation: Detailed information on the SpeechBrain API, contribution guidelines, and code is available in thedocumentation.

🔧 Supported Technologies

  • SpeechBrain is a versatile framework designed for implementing a wide range of technologies within the field of Conversational AI.
  • It excels not only in individual task implementations but also in combining various technologies into complex pipelines.

🎙️ Speech/Audio Processing

TasksDatasetsTechnologies/Models
Speech RecognitionAISHELL-1,CommonVoice,DVoice,LibriSpeech,MEDIA,RescueSpeech,Switchboard,TIMIT,Tedlium2,VoicebankCTC,Transducers,Transformers,Seq2Seq,Beamsearch techniques for CTC,seq2seq,transducers),Rescoring,Conformer,Branchformer,Hyperconformer,Kaldi2-FST
Speaker RecognitionVoxCelebECAPA-TDNN,ResNET,Xvectors,PLDA,Score Normalization
Speech SeparationWSJ0Mix,LibriMix,WHAM!,WHAMR!,Aishell1Mix,BinauralWSJ0MixSepFormer,RESepFormer,SkiM,DualPath RNN,ConvTasNET
Speech EnhancementDNS,VoicebankSepFormer,MetricGAN,MetricGAN-U,SEGAN,spectral masking,time masking
InterpretabilityESC50Listenable Maps for Audio Classifiers (L-MAC),Learning-to-Interpret (L2I),Non-Negative Matrix Factorization (NMF),PIQ
Speech GenerationAudioMNISTDiffusion,Latent Diffusion
Text-to-SpeechLJSpeech,LibriTTSTacotron2,Zero-Shot Multi-Speaker Tacotron2,FastSpeech2
VocodingLJSpeech,LibriTTSHiFiGAN,DiffWave
Spoken Language UnderstandingMEDIA,SLURP,Fluent Speech Commands,Timers-and-SuchDirect SLU,Decoupled SLU,Multistage SLU
Speech-to-Speech TranslationCVSSDiscrete Hubert,HiFiGAN,wav2vec2
Speech TranslationFisher CallHome (Spanish),IWSLT22(lowresource)wav2vec2
Emotion ClassificationIEMOCAP,ZaionEmotionDatasetECAPA-TDNN,wav2vec2,Emotion Diarization
Language IdentificationVoxLingua107,CommonLanguageECAPA-TDNN
Voice Activity DetectionLibriPartyCRDNN
Sound ClassificationESC50,UrbanSoundCNN14,ECAPA-TDNN
Self-Supervised LearningCommonVoice,LibriSpeechwav2vec2
Metric LearningREAL-M,VoicebankBlind SNR-Estimation,PESQ Learning
AlignmentTIMITCTC,Viterbi,Forward Forward
DiarizationAMIECAPA-TDNN,X-vectors,Spectral Clustering

📝 Text Processing

TasksDatasetsTechnologies/Models
Language ModelingCommonVoice,LibriSpeechn-grams,RNNLM,TransformerLM
Response GenerationMultiWOZGPT2,Llama2
Grapheme-to-PhonemeLibriSpeechRNN,Transformer,Curriculum Learning,Homograph loss

🧠 EEG Processing

TasksDatasetsTechnologies/Models
Motor ImageryBNCI2014001,BNCI2014004,BNCI2015001,Lee2019_MI,Zhou201EEGNet,ShallowConvNet,EEGConformer
P300BNCI2014009,EPFLP300,bi2015a,EEGNet
SSVEPLee2019_SSVEPEEGNet

🔍 Additional Features

SpeechBrain includes a range of native functionalities that enhance the development of Conversational AI technologies. Here are some examples:

  • Training Orchestration: TheBrain class serves as a fully customizable tool for managing training and evaluation loops over data. It simplifies training loops while providing the flexibility to override any part of the process.

  • Hyperparameter Management: A YAML-based hyperparameter file specifies all hyperparameters, from individual numbers (e.g., learning rate) to complete objects (e.g., custom models). This elegant solution drastically simplifies the training script.

  • Dynamic Dataloader: Enables flexible and efficient data reading.

  • GPU Training: Supports single and multi-GPU training, including distributed training.

  • Dynamic Batching: On-the-fly dynamic batching enhances the efficient processing of variable-length signals.

  • Mixed-Precision Training: Accelerates training through mixed-precision techniques.

  • Efficient Data Reading: Reads large datasets efficiently from a shared Network File System (NFS) viaWebDataset.

  • Hugging Face Integration: Interfaces seamlessly withHuggingFace for popular models such as wav2vec2 and Hubert.

  • Orion Integration: Interfaces withOrion for hyperparameter tuning.

  • Speech Augmentation Techniques: Includes SpecAugment, Noise, Reverberation, and more.

  • Data Preparation Scripts: Includes scripts for preparing data for supported datasets.

SpeechBrain is rapidly evolving, with ongoing efforts to support a growing array of technologies in the future.

📊 Performance

  • SpeechBrain integrates a variety of technologies, including those that achieves competitive or state-of-the-art performance.

  • For a comprehensive overview of the achieved performance across different tasks, datasets, and technologies, please visithere.

📜 License

  • SpeechBrain is released under theApache License, version 2.0, a popular BSD-like license.
  • You are free to redistribute SpeechBrain for both free and commercial purposes, with the condition of retaining license headers. Unlike the GPL, the Apache License is not viral, meaning you are not obligated to release modifications to the source code.

🔮Future Plans

We have ambitious plans for the future, with a focus on the following priorities:

  • Scale Up: We aim to provide comprehensive recipes and technologies for training massive models on extensive datasets.

  • Scale Down: While scaling up delivers unprecedented performance, we recognize the challenges of deploying large models in production scenarios. We are focusing on real-time, streamable, and small-footprint Conversational AI.

  • Multimodal Large Language Models: We envision a future where a single foundation model can handle a wide range of text, speech, and audio tasks. Our core team is focused on enabling the training of advanced multimodal LLMs.

🤝 Contributing

  • SpeechBrain is a community-driven project, led by a core team with the support of numerous international collaborators.
  • We welcome contributions and ideas from the community. For more information, checkhere.

🙏 Sponsors

  • SpeechBrain is an academically driven project and relies on the passion and enthusiasm of its contributors.
  • As we cannot rely on the resources of a large company, we deeply appreciate any form of support, including donations or collaboration with the core team.
  • If you're interested in sponsoring SpeechBrain, please reach out to us atspeechbrainproject@gmail.com.
  • A heartfelt thank you to all our sponsors, including the current ones:

Image 1    Image 3    Image 4



Image 5    Image 2    Image 6



Image 7    Image 9    Image 8    

📖 Citing SpeechBrain

If you use SpeechBrain in your research or business, please cite it using the following BibTeX entry:

@article{speechbrain_v1,author  ={Mirco Ravanelli and Titouan Parcollet and Adel Moumen and Sylvain de Langen and Cem Subakan and Peter Plantinga and Yingzhi Wang and Pooneh Mousavi and Luca Della Libera and Artem Ploujnikov and Francesco Paissan and Davide Borra and Salah Zaiem and Zeyu Zhao and Shucong Zhang and Georgios Karakasidis and Sung-Lin Yeh and Pierre Champion and Aku Rouhe and Rudolf Braun and Florian Mai and Juan Zuluaga-Gomez and Seyed Mahed Mousavi and Andreas Nautsch and Ha Nguyen and Xuechen Liu and Sangeet Sagar and Jarod Duret and Salima Mdhaffar and Ga{{\"e}}lle Laperri{{\`e}}re and Mickael Rouvier and Renato De Mori and Yannick Est{{\`e}}ve},title   ={Open-Source Conversational AI with SpeechBrain 1.0},journal ={Journal of Machine Learning Research},year    ={2024},volume  ={25},number  ={333},url     ={http://jmlr.org/papers/v25/24-0991.html}}@misc{speechbrain,title={{SpeechBrain}: A General-Purpose Speech Toolkit},author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},year={2021},eprint={2106.04624},archivePrefix={arXiv},primaryClass={eess.AS},note={arXiv:2106.04624}}

Packages

No packages published

Languages


[8]ページ先頭

©2009-2025 Movatter.jp