|
| 1 | +importtkinterastk,numpyasnp,cv2,os,face_recognition |
| 2 | +fromdatetimeimportdatetime |
| 3 | + |
| 4 | +# Initialize empty lists to store images and people's names. |
| 5 | +known_faces= [] |
| 6 | +face_labels= [] |
| 7 | + |
| 8 | +# Get a list of all images in the TrainingImages directory. |
| 9 | +image_files=os.listdir("TrainingImages") |
| 10 | + |
| 11 | +# Loop through the images in the directory. |
| 12 | +forimage_nameinimage_files: |
| 13 | +# Read each image and add it to the known_faces list. |
| 14 | +current_image=cv2.imread(f'TrainingImages/{image_name}') |
| 15 | +known_faces.append(current_image) |
| 16 | + |
| 17 | +# Extract the person's name by removing the file extension and add it to the face_labels list. |
| 18 | +face_labels.append(os.path.splitext(image_name)[0]) |
| 19 | + |
| 20 | + |
| 21 | +# Function to get face encodings from a list of images. |
| 22 | +defget_face_encodings(images): |
| 23 | +encoding_list= [] |
| 24 | +forimageinimages: |
| 25 | +# Convert the image to RGB format. RGB is Red Green Blue. |
| 26 | +image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB) |
| 27 | +# Get the face encoding for the first face found in the image. |
| 28 | +face_encoding=face_recognition.face_encodings(image)[0] |
| 29 | +encoding_list.append(face_encoding) |
| 30 | +returnencoding_list |
| 31 | + |
| 32 | + |
| 33 | +# Define a function to document the recognized face. |
| 34 | +defdocument_recognised_face(name,filename='records.csv'): |
| 35 | +# Get the current date in the YYYY-MM-DD format. |
| 36 | +capture_date=datetime.now().strftime("%Y-%m-%d") |
| 37 | + |
| 38 | +# Check if the specified CSV file exists. |
| 39 | +ifnotos.path.isfile(filename): |
| 40 | +# If the file doesn't exist, create it and write the header. |
| 41 | +withopen(filename,'w')asf: |
| 42 | +f.write('Name,Date,Time')# Create the file and write the header. |
| 43 | + |
| 44 | +# Open the CSV file for reading and writing ('r+') |
| 45 | +withopen(filename,'r+')asfile: |
| 46 | +# Read all lines from the file into a list. |
| 47 | +lines=file.readlines() |
| 48 | + |
| 49 | +# Extract the names from existing lines in the CSV. |
| 50 | +existing_names= [line.split(",")[0]forlineinlines] |
| 51 | + |
| 52 | +# Check if the provided name is not already in the existing names. |
| 53 | +ifnamenotinexisting_names: |
| 54 | +# Get the current time in the HH:MM:SS format. |
| 55 | +now=datetime.now() |
| 56 | +current_time=now.strftime("%H:%M:%S") |
| 57 | + |
| 58 | +# Write the new entry to the CSV file including name, capture date, and time. |
| 59 | +file.write(f'\n{name},{capture_date},{current_time}') |
| 60 | + |
| 61 | + |
| 62 | +# Get face encodings for known images. |
| 63 | +known_face_encodings=get_face_encodings(known_faces) |
| 64 | + |
| 65 | + |
| 66 | +# Function to start the Facial recognition program. |
| 67 | +defstart_recognition_program(): |
| 68 | +# Open a webcam for capturing video. If you are using your computer's webcam, change 1 to 0. |
| 69 | +# If using an external webcam, leave it as 1. |
| 70 | +video_capture=cv2.VideoCapture(1) |
| 71 | + |
| 72 | +whileTrue: |
| 73 | +# Read a frame from the webcam. |
| 74 | +frame=video_capture.read() |
| 75 | + |
| 76 | +# Check if the frame is not None (indicating a successful frame capture). |
| 77 | +ifframeisnotNone: |
| 78 | +frame=frame[1]# The frame is usually the second element of the tuple returned by video_capture.read(). |
| 79 | + |
| 80 | +# Resize the image to a smaller size. |
| 81 | +resized_frame=cv2.resize(frame, (0,0),None,0.25,0.25) |
| 82 | +resized_frame=cv2.cvtColor(resized_frame,cv2.COLOR_BGR2RGB) |
| 83 | + |
| 84 | +# Detect faces in the current frame. |
| 85 | +face_locations=face_recognition.face_locations(resized_frame) |
| 86 | + |
| 87 | +# Get face encodings for the faces detected in the current frame. |
| 88 | +current_face_encodings=face_recognition.face_encodings(resized_frame,face_locations) |
| 89 | + |
| 90 | +# Loop through the detected faces in the current frame. |
| 91 | +forface_encoding,locationinzip(current_face_encodings,face_locations): |
| 92 | +# Compare the current face encoding with the known encodings. |
| 93 | +matches=face_recognition.compare_faces(known_face_encodings,face_encoding) |
| 94 | +face_distances=face_recognition.face_distance(known_face_encodings,face_encoding) |
| 95 | + |
| 96 | +# Find the index of the best match. That is, the best resemblance. |
| 97 | +best_match_index=np.argmin(face_distances) |
| 98 | + |
| 99 | +ifmatches[best_match_index]: |
| 100 | +# If a match is found, get the name of the recognized person. |
| 101 | +recognized_name=face_labels[best_match_index].upper() |
| 102 | + |
| 103 | +# Extract face location coordinates. |
| 104 | +top,right,bottom,left=location |
| 105 | +top,right,bottom,left=top*4,right*4,bottom*4,left*4 |
| 106 | + |
| 107 | +# Draw a rectangle around the recognized face. |
| 108 | +cv2.rectangle(frame, (left,top), (right,bottom), (0,255,0),2) |
| 109 | + |
| 110 | +# Draw a filled rectangle and display the name above the face. |
| 111 | +cv2.rectangle(frame, (left,bottom-35), (right,bottom), (0,255,0),cv2.FILLED) |
| 112 | +cv2.putText(frame,recognized_name, (left+6,bottom-6),cv2.FONT_HERSHEY_COMPLEX,1, |
| 113 | + (255,255,255),2) |
| 114 | +document_recognised_face(recognized_name) |
| 115 | + |
| 116 | +# Display the image with recognized faces. |
| 117 | +cv2.imshow("Webcam",frame) |
| 118 | + |
| 119 | +# Check for key press |
| 120 | +key=cv2.waitKey(1)&0xFF |
| 121 | + |
| 122 | +# Check if the 'q' key is pressed to exit the program. |
| 123 | +ifkey==ord('q'): |
| 124 | +break |
| 125 | + |
| 126 | +# Release the video capture and close all OpenCV windows. |
| 127 | +video_capture.release() |
| 128 | +cv2.destroyAllWindows() |
| 129 | + |
| 130 | + |
| 131 | +# Create the main application window. |
| 132 | +root=tk.Tk() |
| 133 | +root.title("Face Recognition Program") |
| 134 | + |
| 135 | +# Create a label |
| 136 | +label=tk.Label(root,text="Click the button to start the facial recognition program") |
| 137 | +label.pack(pady=10) |
| 138 | + |
| 139 | +# Create a button to start the program |
| 140 | +start_button=tk.Button(root,text="Start Recognition",command=start_recognition_program) |
| 141 | +start_button.pack(pady=10) |
| 142 | + |
| 143 | + |
| 144 | +# Function to quit the application. This is for quitting the entire program. To quit the webcam stream, hit q. |
| 145 | +defquit_app(): |
| 146 | +root.quit() |
| 147 | +cv2.destroyAllWindows() |
| 148 | + |
| 149 | + |
| 150 | +# Create a quit button to exit the application. |
| 151 | +exit_button=tk.Button(root,text="Close",command=quit_app) |
| 152 | +exit_button.pack(pady=10) |
| 153 | + |
| 154 | +# Start the Tkinter event loop. |
| 155 | +root.mainloop() |