Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitc97fe6e

Browse files
committed
Pushing the docs to dev/ for branch: master, commit e8ca95616f4f1a28db12b633aa450e9f3d19f575
1 parent41babf6 commitc97fe6e

File tree

613 files changed

+971
-968
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

613 files changed

+971
-968
lines changed
Binary file not shown.

‎dev/_downloads/58afd0669a2190b8c0825a98eb4321d8/plot_mini_batch_kmeans.py

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -59,12 +59,13 @@
5959
# We want to have the same colors for the same cluster from the
6060
# MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per
6161
# closest one.
62-
k_means_cluster_centers=np.sort(k_means.cluster_centers_,axis=0)
63-
mbk_means_cluster_centers=np.sort(mbk.cluster_centers_,axis=0)
62+
k_means_cluster_centers=k_means.cluster_centers_
63+
order=pairwise_distances_argmin(k_means.cluster_centers_,
64+
mbk.cluster_centers_)
65+
mbk_means_cluster_centers=mbk.cluster_centers_[order]
66+
6467
k_means_labels=pairwise_distances_argmin(X,k_means_cluster_centers)
6568
mbk_means_labels=pairwise_distances_argmin(X,mbk_means_cluster_centers)
66-
order=pairwise_distances_argmin(k_means_cluster_centers,
67-
mbk_means_cluster_centers)
6869

6970
# KMeans
7071
ax=fig.add_subplot(1,3,1)
@@ -84,8 +85,8 @@
8485
# MiniBatchKMeans
8586
ax=fig.add_subplot(1,3,2)
8687
fork,colinzip(range(n_clusters),colors):
87-
my_members=mbk_means_labels==order[k]
88-
cluster_center=mbk_means_cluster_centers[order[k]]
88+
my_members=mbk_means_labels==k
89+
cluster_center=mbk_means_cluster_centers[k]
8990
ax.plot(X[my_members,0],X[my_members,1],'w',
9091
markerfacecolor=col,marker='.')
9192
ax.plot(cluster_center[0],cluster_center[1],'o',markerfacecolor=col,
@@ -101,7 +102,7 @@
101102
ax=fig.add_subplot(1,3,3)
102103

103104
forkinrange(n_clusters):
104-
different+= ((k_means_labels==k)!= (mbk_means_labels==order[k]))
105+
different+= ((k_means_labels==k)!= (mbk_means_labels==k))
105106

106107
identic=np.logical_not(different)
107108
ax.plot(X[identic,0],X[identic,1],'w',

‎dev/_downloads/b547a0f1cb31854154c511c150b4a23f/plot_mini_batch_kmeans.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"print(__doc__)\n\nimport time\n\nimport numpy as np\nimport matplotlib.pyplot as plt\n\nfrom sklearn.cluster import MiniBatchKMeans, KMeans\nfrom sklearn.metrics.pairwise import pairwise_distances_argmin\nfrom sklearn.datasets.samples_generator import make_blobs\n\n# #############################################################################\n# Generate sample data\nnp.random.seed(0)\n\nbatch_size = 45\ncenters = [[1, 1], [-1, -1], [1, -1]]\nn_clusters = len(centers)\nX, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)\n\n# #############################################################################\n# Compute clustering with Means\n\nk_means = KMeans(init='k-means++', n_clusters=3, n_init=10)\nt0 = time.time()\nk_means.fit(X)\nt_batch = time.time() - t0\n\n# #############################################################################\n# Compute clustering with MiniBatchKMeans\n\nmbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size,\n n_init=10, max_no_improvement=10, verbose=0)\nt0 = time.time()\nmbk.fit(X)\nt_mini_batch = time.time() - t0\n\n# #############################################################################\n# Plot result\n\nfig = plt.figure(figsize=(8, 3))\nfig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)\ncolors = ['#4EACC5', '#FF9C34', '#4E9A06']\n\n# We want to have the same colors for the same cluster from the\n# MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per\n# closest one.\nk_means_cluster_centers = np.sort(k_means.cluster_centers_, axis=0)\nmbk_means_cluster_centers = np.sort(mbk.cluster_centers_, axis=0)\nk_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)\nmbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)\norder = pairwise_distances_argmin(k_means_cluster_centers,\n mbk_means_cluster_centers)\n\n# KMeans\nax = fig.add_subplot(1, 3, 1)\nfor k, col in zip(range(n_clusters), colors):\n my_members = k_means_labels == k\n cluster_center = k_means_cluster_centers[k]\n ax.plot(X[my_members, 0], X[my_members, 1], 'w',\n markerfacecolor=col, marker='.')\n ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,\n markeredgecolor='k', markersize=6)\nax.set_title('KMeans')\nax.set_xticks(())\nax.set_yticks(())\nplt.text(-3.5, 1.8, 'train time: %.2fs\\ninertia: %f' % (\n t_batch, k_means.inertia_))\n\n# MiniBatchKMeans\nax = fig.add_subplot(1, 3, 2)\nfor k, col in zip(range(n_clusters), colors):\n my_members = mbk_means_labels == order[k]\n cluster_center = mbk_means_cluster_centers[order[k]]\n ax.plot(X[my_members, 0], X[my_members, 1], 'w',\n markerfacecolor=col, marker='.')\n ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,\n markeredgecolor='k', markersize=6)\nax.set_title('MiniBatchKMeans')\nax.set_xticks(())\nax.set_yticks(())\nplt.text(-3.5, 1.8, 'train time: %.2fs\\ninertia: %f' %\n (t_mini_batch, mbk.inertia_))\n\n# Initialise the different array to all False\ndifferent = (mbk_means_labels == 4)\nax = fig.add_subplot(1, 3, 3)\n\nfor k in range(n_clusters):\n different += ((k_means_labels == k) != (mbk_means_labels == order[k]))\n\nidentic = np.logical_not(different)\nax.plot(X[identic, 0], X[identic, 1], 'w',\n markerfacecolor='#bbbbbb', marker='.')\nax.plot(X[different, 0], X[different, 1], 'w',\n markerfacecolor='m', marker='.')\nax.set_title('Difference')\nax.set_xticks(())\nax.set_yticks(())\n\nplt.show()"
29+
"print(__doc__)\n\nimport time\n\nimport numpy as np\nimport matplotlib.pyplot as plt\n\nfrom sklearn.cluster import MiniBatchKMeans, KMeans\nfrom sklearn.metrics.pairwise import pairwise_distances_argmin\nfrom sklearn.datasets.samples_generator import make_blobs\n\n# #############################################################################\n# Generate sample data\nnp.random.seed(0)\n\nbatch_size = 45\ncenters = [[1, 1], [-1, -1], [1, -1]]\nn_clusters = len(centers)\nX, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)\n\n# #############################################################################\n# Compute clustering with Means\n\nk_means = KMeans(init='k-means++', n_clusters=3, n_init=10)\nt0 = time.time()\nk_means.fit(X)\nt_batch = time.time() - t0\n\n# #############################################################################\n# Compute clustering with MiniBatchKMeans\n\nmbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size,\n n_init=10, max_no_improvement=10, verbose=0)\nt0 = time.time()\nmbk.fit(X)\nt_mini_batch = time.time() - t0\n\n# #############################################################################\n# Plot result\n\nfig = plt.figure(figsize=(8, 3))\nfig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)\ncolors = ['#4EACC5', '#FF9C34', '#4E9A06']\n\n# We want to have the same colors for the same cluster from the\n# MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per\n# closest one.\nk_means_cluster_centers = k_means.cluster_centers_\norder = pairwise_distances_argmin(k_means.cluster_centers_,\n mbk.cluster_centers_)\nmbk_means_cluster_centers = mbk.cluster_centers_[order]\n\nk_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)\nmbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)\n\n# KMeans\nax = fig.add_subplot(1, 3, 1)\nfor k, col in zip(range(n_clusters), colors):\n my_members = k_means_labels == k\n cluster_center = k_means_cluster_centers[k]\n ax.plot(X[my_members, 0], X[my_members, 1], 'w',\n markerfacecolor=col, marker='.')\n ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,\n markeredgecolor='k', markersize=6)\nax.set_title('KMeans')\nax.set_xticks(())\nax.set_yticks(())\nplt.text(-3.5, 1.8, 'train time: %.2fs\\ninertia: %f' % (\n t_batch, k_means.inertia_))\n\n# MiniBatchKMeans\nax = fig.add_subplot(1, 3, 2)\nfor k, col in zip(range(n_clusters), colors):\n my_members = mbk_means_labels == k\n cluster_center = mbk_means_cluster_centers[k]\n ax.plot(X[my_members, 0], X[my_members, 1], 'w',\n markerfacecolor=col, marker='.')\n ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,\n markeredgecolor='k', markersize=6)\nax.set_title('MiniBatchKMeans')\nax.set_xticks(())\nax.set_yticks(())\nplt.text(-3.5, 1.8, 'train time: %.2fs\\ninertia: %f' %\n (t_mini_batch, mbk.inertia_))\n\n# Initialise the different array to all False\ndifferent = (mbk_means_labels == 4)\nax = fig.add_subplot(1, 3, 3)\n\nfor k in range(n_clusters):\n different += ((k_means_labels == k) != (mbk_means_labels == k))\n\nidentic = np.logical_not(different)\nax.plot(X[identic, 0], X[identic, 1], 'w',\n markerfacecolor='#bbbbbb', marker='.')\nax.plot(X[different, 0], X[different, 1], 'w',\n markerfacecolor='m', marker='.')\nax.set_title('Difference')\nax.set_xticks(())\nax.set_yticks(())\n\nplt.show()"
3030
]
3131
}
3232
],
Binary file not shown.

‎dev/_downloads/scikit-learn-docs.pdf

-10.4 KB
Binary file not shown.

‎dev/_images/iris.png

0 Bytes
-120 Bytes
-120 Bytes
-82 Bytes
-560 Bytes
-560 Bytes
179 Bytes
-155 Bytes
-155 Bytes
-193 Bytes
301 Bytes
301 Bytes
-192 Bytes
-85 Bytes
12 Bytes
328 Bytes
257 Bytes
-2.54 KB
-2.54 KB
-455 Bytes
318 Bytes
318 Bytes
71 Bytes
71 Bytes
-89 Bytes
-89 Bytes
-45 Bytes
-45 Bytes
-146 Bytes
-146 Bytes
-58 Bytes
-58 Bytes
-177 Bytes
121 Bytes
-156 Bytes
-156 Bytes
-82 Bytes
-326 Bytes
-361 Bytes
-361 Bytes
-253 Bytes
-361 Bytes
-144 Bytes
-144 Bytes
-186 Bytes
-19 Bytes

‎dev/_sources/auto_examples/applications/plot_face_recognition.rst.txt

Lines changed: 15 additions & 15 deletions

‎dev/_sources/auto_examples/applications/plot_model_complexity_influence.rst.txt

Lines changed: 15 additions & 15 deletions

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp