Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A universal metrics layer. Compatible with definitions in LookML, MetricFlow, Cube with DuckDB, Snowflake, Clickhouse, Bigquery & more!

License

NotificationsYou must be signed in to change notification settings

sidequery/sidemantic

SQL-first semantic layer for consistent metrics across your data stack. Import from Cube, dbt MetricFlow, LookML, Hex, Rill, Superset, and Omni. Supports DuckDB, MotherDuck, PostgreSQL, BigQuery, Snowflake, ClickHouse, Databricks, and Spark SQL.

DocumentationGitHub

Features

  • SQL query interface: Write familiar SQL that gets rewritten to use semantic layer
  • Automatic joins: Define relationships, joins happen automatically via graph traversal
  • Multi-format adapters: Import from 8 semantic layer formats (Cube, dbt, Looker, Hex, and more)
  • SQLGlot-powered: Dialect-agnostic SQL generation with transpilation support
  • Type-safe: Pydantic models with validation
  • Pre-aggregations: Automatic query routing to materialized rollups
  • Predicate pushdown: Filters pushed into CTEs for improved performance
  • Segments: Reusable named filters with template placeholders
  • Metric-level filters: Auto-applied filters for consistent business logic
  • Jinja2 templating: Conditional logic and loops in SQL
  • Inheritance: Extend models and metrics
  • Hierarchies: Parent/child dimensions with drill-down API
  • Relative dates: Natural language like "last 7 days", "this month"
  • Ungrouped queries: Raw row access without aggregation
  • Multi-hop joins: Automatic 2+ hop join discovery

Metric Types

  • Aggregations: sum, avg, count, count_distinct, min, max
  • Ratios: revenue / order_count
  • Derived formulas: (revenue - cost) / revenue
  • Cumulative: running totals, rolling windows
  • Time comparisons: YoY, MoM, WoW with LAG window functions
  • Conversion funnels: signup → purchase rate

Supported Formats

Import semantic models from:

  • Sidemantic (native)
  • Cube
  • MetricFlow (dbt)
  • LookML (Looker)
  • Hex
  • Rill
  • Superset (Apache)
  • Omni

See theAdapter Compatibility section for detailed feature support.

CLI

Sidemantic includes powerful CLI tools for working with your semantic layer:

Sidequery Workbench

Interactive workbench for exploring and querying your semantic layer:

# Try the demo (no setup required!)uvx sidemantic workbench --demo# Or with your own modelssidemantic workbench semantic_models/

Features:

  • Tree browser with hover tooltips showing full metadata
  • Tabbed SQL editor with syntax highlighting and 4 example queries
  • Table and chart views with automatic axis selection for time-series
  • Chart types: Bar, Line, and Scatter plots
  • Keyboard shortcuts: Ctrl+R to run, Ctrl+C to quit
  • Demo mode: Try it instantly with--demo flag (includes sample data from multiple formats)

Query Command

Execute SQL queries from the command line and get CSV output:

# Query to stdoutsidemantic query examples/multi_format_demo/ --sql"SELECT orders.total_revenue, customers.region FROM orders"# Query to filesidemantic query examples/multi_format_demo/ -q"SELECT orders.total_revenue FROM orders" -o results.csv# Pipe to other toolssidemantic query examples/multi_format_demo/ -q"SELECT * FROM orders"| head -5

Perfect for:

  • Shell scripts and automation
  • Piping to other tools (jq, csvkit, etc.)
  • Generating reports
  • CI/CD workflows

PostgreSQL Server

Expose your semantic layer over the PostgreSQL wire protocol:

# Start server (demo mode)sidemantic serve --demo# Start with your modelssidemantic serve semantic_models/ --port 5433# With authenticationsidemantic serve semantic_models/ --username admin --password secret

Connect with any PostgreSQL client:

psql -h 127.0.0.1 -p 5433 -U admin -d sidemantic

Note: Requirespip install sidemantic[serve]

Perfect for:

  • BI tools (Tableau, Power BI, Looker, Metabase)
  • SQL clients (DBeaver, DataGrip, pgAdmin)
  • Python libraries (psycopg2, SQLAlchemy)
  • Any PostgreSQL-compatible tool

Other Commands

# Validate all definitionssidemantic validate semantic_models/# Quick infosidemantic info semantic_models/# MCP server for AI integrationsidemantic mcp-serve semantic_models/

Quick Start

Sidemantic supportsthree definition syntaxes: YAML, SQL, and Python. Choose your preference!

Define your semantic layer

YAML:

# semantic_layer.ymlmodels:  -name:orderstable:ordersprimary_key:order_idrelationships:      -name:customertype:many_to_oneforeign_key:customer_iddimensions:      -name:statustype:categoricalsql:status      -name:order_datetype:timesql:created_atgranularity:daymetrics:      -name:revenueagg:sumsql:amount      -name:order_countagg:countmetrics:  -name:total_revenuesql:orders.revenue

SQL:

-- semantic_layer.sqlMODEL (name orders, table orders, primary_key order_id);RELATIONSHIP (name customer, type many_to_one, foreign_key customer_id);DIMENSION (name status, type categorical, sql status);DIMENSION (name order_date, typetime, sql created_at, granularity day);METRIC (name revenue, agg sum, sql amount);METRIC (name order_count, agg count);

Python:

fromsidemanticimportSemanticLayer,Model,Dimension,Metric,Relationshiplayer=SemanticLayer()orders=Model(name="orders",table="orders",primary_key="order_id",relationships=[Relationship(name="customer",type="many_to_one",foreign_key="customer_id")],dimensions=[Dimension(name="status",type="categorical",sql="status"),Dimension(name="order_date",type="time",sql="created_at",granularity="day"),    ],metrics=[Metric(name="revenue",agg="sum",sql="amount"),Metric(name="order_count",agg="count"),    ])layer.add_model(orders)

Query with SQL

fromsidemanticimportSemanticLayer# Load semantic layerlayer=SemanticLayer.from_yaml("semantic_layer.yml")# Query with familiar SQL - automatically rewrittenresult=layer.sql("""    SELECT revenue, status    FROM orders    WHERE status = 'completed'""")df=result.fetchdf()
Alternative: Python API
fromsidemanticimportSemanticLayer,Model,Metric,Dimension,Relationshiplayer=SemanticLayer()orders=Model(name="orders",table="orders",primary_key="order_id",relationships=[Relationship(name="customer",type="many_to_one",foreign_key="customer_id")    ],dimensions=[Dimension(name="status",type="categorical",sql="status"),Dimension(name="order_date",type="time",sql="created_at",granularity="day"),    ],metrics=[Metric(name="revenue",agg="sum",sql="amount"),Metric(name="order_count",agg="count"),    ])layer.add_model(orders)# Programmatic queryresult=layer.query(metrics=["orders.revenue"],dimensions=["orders.status"],filters=["orders.status = 'completed'"])df=result.fetchdf()

Editor Support

Generate JSON Schema for autocomplete in VS Code, IntelliJ, etc:

uv run python -m sidemantic.schema

Add to your YAML files:

# yaml-language-server: $schema=./sidemantic-schema.json

Loading From Multiple Formats

The easiest way to load semantic models from any format:

fromsidemanticimportSemanticLayer,load_from_directory# Point at a directory with mixed formats (Cube, LookML, Hex, MetricFlow, etc.)layer=SemanticLayer(connection="duckdb:///data.db")load_from_directory(layer,"semantic_models/")# That's it! Automatically:# - Discovers all semantic layer files# - Detects format (Cube, Hex, LookML, MetricFlow, Sidemantic)# - Parses with the right adapter# - Infers relationships from foreign key naming (customer_id -> customers)# - Ready to query!result=layer.query(metrics=["orders.revenue"],dimensions=["customers.region"])

Manual Adapter Usage

For more control, you can use adapters directly:

fromsidemantic.adapters.cubeimportCubeAdapterfromsidemantic.adapters.metricflowimportMetricFlowAdapterfromsidemantic.adapters.sidemanticimportSidemanticAdapter# From Cubecube_adapter=CubeAdapter()graph=cube_adapter.parse("cube_schema.yml")# From MetricFlow (dbt)mf_adapter=MetricFlowAdapter()graph=mf_adapter.parse("semantic_models.yml")# From native Sidemanticnative_adapter=SidemanticAdapter()graph=native_adapter.parse("semantic_layer.yml")

Advanced Features

Complex Metrics

Define ratios, formulas, cumulative metrics with automatic dependency detection:

models:  -name:orderstable:ordersprimary_key:order_idmetrics:# Model-level aggregations      -name:revenueagg:sumsql:amount      -name:completed_revenueagg:sumsql:amountfilters:["status = 'completed'"]# Graph-level metricsmetrics:# Simple reference (dependencies auto-detected)  -name:total_revenuesql:orders.revenue# Ratio  -name:conversion_ratetype:rationumerator:orders.completed_revenuedenominator:orders.revenue# Derived (dependencies auto-detected from formula!)  -name:profit_margintype:derivedsql:"(revenue - cost) / revenue"# Cumulative  -name:running_totaltype:cumulativesql:orders.revenuewindow:"7 days"
Python alternative
Metric(name="total_revenue",sql="orders.revenue")Metric(name="conversion_rate",type="ratio",numerator="orders.completed_revenue",denominator="orders.revenue")Metric(name="profit_margin",type="derived",sql="(revenue - cost) / revenue")Metric(name="running_total",type="cumulative",sql="orders.revenue",window="7 days")

Automatic Joins

Define relationships once, query across models:

models:  -name:orderstable:ordersprimary_key:order_idrelationships:      -name:customertype:many_to_oneforeign_key:customer_id  -name:customerstable:customersprimary_key:customer_idrelationships:      -name:regiontype:many_to_oneforeign_key:region_id

Query spans 2 hops automatically:

# Automatically joins orders -> customers -> regionsresult=layer.sql("""    SELECT orders.revenue, regions.region_name    FROM orders""")

Relationship Types

  • many_to_one: Many records in THIS table → one record in OTHER table (e.g., orders → customer)
  • one_to_many: One record in THIS table → many records in OTHER table (e.g., customer → orders)
  • one_to_one: One record in THIS table → one record in OTHER table (e.g., order → invoice)

Feature Examples

Segments - Reusable Filters

models:  -name:orderssegments:      -name:completedsql:"{model}.status = 'completed'"description:"Only completed orders"      -name:high_valuesql:"{model}.amount > 100"# Use in querieslayer.compile(metrics=["orders.revenue"], segments=["orders.completed"])

Metric-Level Filters

metrics:  -name:completed_revenueagg:sumsql:amountfilters:["{model}.status = 'completed'"]# Auto-applied!

Jinja2 Templates

metrics:  -name:taxed_revenueagg:sumsql:"{% if include_tax %}amount * 1.1{% else %}amount{% endif %}"# Use with parameterslayer.compile(metrics=["orders.taxed_revenue"], parameters={"include_tax":True})

Inheritance

models:  -name:base_salestable:salesdimensions:[...]  -name:filtered_salesextends:base_sales# Inherits all dimensions!segments:[...]

Hierarchies & Drill-Down

# Define hierarchyDimension(name="country",type="categorical")Dimension(name="state",type="categorical",parent="country")Dimension(name="city",type="categorical",parent="state")# Navigate hierarchymodel.get_hierarchy_path("city")# ['country', 'state', 'city']model.get_drill_down("country")# 'state'model.get_drill_up("city")# 'state'

Relative Dates

# Natural language date filterslayer.compile(metrics=["orders.revenue"],filters=["orders_cte.created_at >= 'last 7 days'"])# Auto-converts to: created_at >= CURRENT_DATE - 7# Supports: "last N days/weeks/months", "this/last/next month/quarter/year", "today", etc.

Ungrouped Queries

# Get raw rows without aggregation (for detail views)sql=layer.compile(metrics=["orders.revenue"],dimensions=["orders.customer_id"],ungrouped=True# Returns raw rows)

Adapter Compatibility

Supported Formats

FormatImportNotes
Sidemantic (native)Full feature support
CubeNo native segments
MetricFlow (dbt)No native segments or hierarchies
LookML (Looker)Liquid templating (not Jinja)
HexNo segments or cross-model derived metrics
RillNo relationships, segments, or cross-model metrics; single-model only
Superset (Apache)No relationships in datasets
OmniRelationships in separate model file

Feature Compatibility

This table shows which Sidemantic features are supported when importing from other formats:

FeatureSidemanticCubeMetricFlowLookMLHexRillSupersetOmniNotes
ModelsAll formats support models/tables
DimensionsAll formats support dimensions
Simple MetricsAll formats support sum, count, avg, min, max
Time DimensionsAll formats support time dimensions with granularity
RelationshipsRill/Superset: single-model only; Omni: in model file
Derived MetricsAll formats support calculated metrics
Metric Filters⚠️Rill has basic support; Superset lacks filters
Ratio MetricsRill/Superset don't have native ratio metric type
SegmentsOnly Cube and LookML have native segment support
Cumulative MetricsCube has rolling_window; MetricFlow has cumulative; others lack native support
Time ComparisonOnly MetricFlow has native time comparison metrics
Jinja Templates⚠️LookML uses Liquid templating
Hierarchies⚠️⚠️⚠️Cube/LookML/Omni: via drill_fields
InheritanceOnly LookML has native extends support
Metadata Fields⚠️⚠️⚠️⚠️⚠️Label and description support varies by format
ParametersSidemantic-only feature
Ungrouped QueriesSidemantic-only feature

Legend:

  • ✅ Full support - feature fully supported on import
  • ⚠️ Partial support - feature works with limitations
  • ❌ Not supported - feature not available in source format

Database Support

Sidemantic supports multiple databases:

DatabaseStatusInstallation
DuckDBBuilt-in (default)
MotherDuckBuilt-in (cloud DuckDB)
PostgreSQLpip install sidemantic[postgres]
BigQuerypip install sidemantic[bigquery]
Snowflakepip install sidemantic[snowflake]
ClickHousepip install sidemantic[clickhouse]
Databrickspip install sidemantic[databricks]
Spark SQLpip install sidemantic[spark]

Connection examples:

# DuckDB (default)connection:duckdb:///data.duckdb# MotherDuck (cloud DuckDB - requires MOTHERDUCK_TOKEN env var)connection:duckdb://md:database_name# PostgreSQLconnection:postgres://user:pass@localhost:5432/analytics# BigQueryconnection:bigquery://project-id/dataset-id# Snowflakeconnection:snowflake://user:pass@account/database/schema?warehouse=wh# ClickHouseconnection:clickhouse://user:pass@localhost:8123/default# Databricksconnection:databricks://token@server/http-path?catalog=main# Spark SQLconnection:spark://localhost:10000/default

See thedocumentation for complete connection string formats and features.

Status

  • SQL query interface with automatic rewriting
  • Core semantic layer with SQLGlot generation
  • Relationship-based automatic joins (many_to_one, one_to_many, one_to_one)
  • Multi-hop join discovery
  • Derived metrics with automatic dependency detection
  • Cumulative metrics (running totals, rolling windows)
  • Conversion funnel metrics
  • Time comparison metrics (YoY, MoM, WoW)
  • Segments (reusable filters)
  • Metric-level filters
  • Jinja2 templating
  • Model and metric inheritance
  • Hierarchies with drill-down API
  • Relative date parsing
  • Ungrouped queries (raw row access)
  • Metadata fields (format, drill_fields, non-additivity, defaults)
  • Native YAML format
  • Adapters for 8 semantic layer formats (Cube, MetricFlow, LookML, Hex, Rill, Superset, Omni)
  • DuckDB integration
  • Pre-aggregations with automatic query routing
  • Predicate pushdown with SQLGlot parsing
  • PostgreSQL wire protocol server for broader client compatibility

Roadmap

  • Pre-aggregation materialization and refresh scheduling
  • Additional database engine support (Postgres, MySQL, Snowflake, BigQuery, etc.)
  • REST API endpoints for HTTP-based queries

Examples

Seeexamples/ directory:

  • sql_query_example.py - SQL query interface demonstration
  • basic_example.py - Core usage patterns
  • sidemantic/orders.yml - Native YAML example
  • cube/orders.yml - Cube format example
  • metricflow/semantic_models.yml - MetricFlow format example

Testing

Run tests:

uv run pytest -v

About

A universal metrics layer. Compatible with definitions in LookML, MetricFlow, Cube with DuckDB, Snowflake, Clickhouse, Bigquery & more!

Topics

Resources

License

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

[8]ページ先頭

©2009-2025 Movatter.jp