Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

A comprehensive evaluation toolkit for assessing Retrieval-Augmented Generation (RAG) outputs using linguistic, semantic, and fairness metrics

License

NotificationsYou must be signed in to change notification settings

shaadclt/EvalRAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview

EvalRAG is a comprehensive evaluation toolkit for assessing Retrieval-Augmented Generation (RAG) outputs using linguistic, semantic, and fairness metrics.

Installation

You can install the library using pip:

pip install eval-rag

Usage

Here's how to use the Eval RAG library:

fromeval_ragimportEvalRAG# Initialize the evaluatorevaluator=EvalRAG()# Input dataquestion="What are the causes of climate change?"response="Climate change is caused by human activities."reference="Human activities such as burning fossil fuels cause climate change."# Evaluate the responsemetrics=evaluator.evaluate_all(question,response,reference)# Print the resultsprint(metrics)

Metrics

The RAG Evaluator provides the following metrics:

  1. BLEU (0-100): Measures the overlap between the generated output and reference text based on n-grams.

    • 0-20: Low similarity, 20-40: Medium-low, 40-60: Medium, 60-80: High, 80-100: Very high
  2. ROUGE-1 (0-1): Measures the overlap of unigrams between the generated output and reference text.

    • 0.0-0.2: Poor overlap, 0.2-0.4: Fair, 0.4-0.6: Good, 0.6-0.8: Very good, 0.8-1.0: Excellent
  3. BERT Score (0-1): Evaluates the semantic similarity using BERT embeddings (Precision, Recall, F1).

    • 0.0-0.5: Low similarity, 0.5-0.7: Moderate, 0.7-0.8: Good, 0.8-0.9: High, 0.9-1.0: Very high
  4. Perplexity (1 to ∞, lower is better): Measures how well a language model predicts the text.

    • 1-10: Excellent, 10-50: Good, 50-100: Moderate, 100+: High (potentially nonsensical)
  5. Diversity (0-1): Measures the uniqueness of bigrams in the generated output.

    • 0.0-0.2: Very low, 0.2-0.4: Low, 0.4-0.6: Moderate, 0.6-0.8: High, 0.8-1.0: Very high
  6. Racial Bias (0-1): Detects the presence of biased language in the generated output.

    • 0.0-0.2: Low probability, 0.2-0.4: Moderate, 0.4-0.6: High, 0.6-0.8: Very high, 0.8-1.0: Extreme
  7. MAUVE (0-1): MAUVE captures contextual meaning, coherence, and fluency while measuring both semantic similarity and stylistic alignment .

    • 0.0-0.2 (Poor), 0.2-0.4 (Fair), 0.4-0.6 (Good), 0.6-0.8 (Very good), 0.8-1.0 (Excellent).
  8. METEOR (0-1): Calculates semantic similarity considering synonyms and paraphrases.

    • 0.0-0.2: Poor, 0.2-0.4: Fair, 0.4-0.6: Good, 0.6-0.8: Very good, 0.8-1.0: Excellent
  9. CHRF (0-1): Computes Character n-gram F-score for fine-grained text similarity.

    • 0.0-0.2: Low, 0.2-0.4: Moderate, 0.4-0.6: Good, 0.6-0.8: High, 0.8-1.0: Very high
  10. Flesch Reading Ease (0-100): Assesses text readability.

  • 0-30: Very difficult, 30-50: Difficult, 50-60: Fairly difficult, 60-70: Standard, 70-80: Fairly easy, 80-90: Easy, 90-100: Very easy
  1. Flesch-Kincaid Grade (0-18+): Indicates the U.S. school grade level needed to understand the text.
    • 1-6: Elementary, 7-8: Middle school, 9-12: High school, 13+: College level

Testing

To run the tests, use the following command:

python -m unittest discover -s eval_rag -p "test_*.py"

License

This project is licensed under the MIT License. See theLICENSE file for details.

Contributing

Contributions are welcome! If you have any improvements, suggestions, or bug fixes, feel free to create a pull request (PR) or open an issue on GitHub. Please ensure your contributions adhere to the project's coding standards and include appropriate tests.

How to Contribute

  1. Fork the repository.
  2. Create a new branch for your feature or bug fix.
  3. Make your changes.
  4. Run tests to ensure everything is working.
  5. Commit your changes and push to your fork.
  6. Create a pull request (PR) with a detailed description of your changes.

Contact

If you have any questions or need further assistance, feel free to reach out viaemail.

About

A comprehensive evaluation toolkit for assessing Retrieval-Augmented Generation (RAG) outputs using linguistic, semantic, and fairness metrics

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages


[8]ページ先頭

©2009-2026 Movatter.jp