Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Performance Issues with layer_likelihood (sparse matrix representation) #50

Open
@verginer

Description

@verginer

The layer_likelihood function in tests has a bottleneck the indexing of the transition matrix

transition_matrix=self.transition_matrices[l]
factor_=paths.paths[k][p][1]
forsinrange(len(nodes)-1):
idx_s1=indexmaps[l][nodes[s+1]]
idx_s0=indexmaps[l][nodes[s]]
trans_mat=transition_matrix[idx_s1,idx_s0]
likelihood+=np.log(trans_mat)*factor_

Some stats changing the type of sparse matrix used:

denselilcsrcsc
layer_likelihood2.83.51027
estimate_order16.817.62442
with instantiation29.1304151

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions


      [8]ページ先頭

      ©2009-2025 Movatter.jp