- Notifications
You must be signed in to change notification settings - Fork0
Array APIs to write ONNX Graphs
License
sdpython/onnx-array-api
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
onnx-array-api implements APIs to create custom ONNX graphs.The objective is to speed up the implementation of converter libraries.The first one matchesnumpy API.It gives the user the ability to convert functions writtenfollowing the numpy API to convert that function into ONNX aswell as to execute it.
importnumpyasnpfromonnx_array_api.npximportabsolute,jit_onnxfromonnx_array_api.plotting.text_plotimportonnx_simple_text_plotdefl1_loss(x,y):returnabsolute(x-y).sum()defl2_loss(x,y):return ((x-y)**2).sum()defmyloss(x,y):returnl1_loss(x[:,0],y[:,0])+l2_loss(x[:,1],y[:,1])jitted_myloss=jit_onnx(myloss)x=np.array([[0.1,0.2], [0.3,0.4]],dtype=np.float32)y=np.array([[0.11,0.22], [0.33,0.44]],dtype=np.float32)res=jitted_myloss(x,y)print(res)print(onnx_simple_text_plot(jitted_myloss.get_onnx()))
[0.042]opset: domain='' version=18input: name='x0' type=dtype('float32') shape=['', '']input: name='x1' type=dtype('float32') shape=['', '']Sub(x0, x1) -> r__0 Abs(r__0) -> r__1 ReduceSum(r__1, keepdims=0) -> r__2output: name='r__2' type=dtype('float32') shape=None
It supports eager mode as well:
importnumpyasnpfromonnx_array_api.npximportabsolute,eager_onnxdefl1_loss(x,y):err=absolute(x-y).sum()print(f"l1_loss={err.numpy()}")returnerrdefl2_loss(x,y):err= ((x-y)**2).sum()print(f"l2_loss={err.numpy()}")returnerrdefmyloss(x,y):returnl1_loss(x[:,0],y[:,0])+l2_loss(x[:,1],y[:,1])eager_myloss=eager_onnx(myloss)x=np.array([[0.1,0.2], [0.3,0.4]],dtype=np.float32)y=np.array([[0.11,0.22], [0.33,0.44]],dtype=np.float32)res=eager_myloss(x,y)print(res)
l1_loss=[0.04]l2_loss=[0.002][0.042]
The second API orLight API tends to do every thing in one line.The euclidean distance looks like the following:
import numpy as npfrom onnx_array_api.light_api import startfrom onnx_array_api.plotting.text_plot import onnx_simple_text_plotmodel = ( start() .vin("X") .vin("Y") .bring("X", "Y") .Sub() .rename("dxy") .cst(np.array([2], dtype=np.int64), "two") .bring("dxy", "two") .Pow() .ReduceSum() .rename("Z") .vout() .to_onnx())
The library is released onpypi/onnx-array-apiand its documentation is published atAPIs to create ONNX Graphs.
About
Array APIs to write ONNX Graphs
Topics
Resources
License
Code of conduct
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors2
Uh oh!
There was an error while loading.Please reload this page.