Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Array APIs to write ONNX Graphs

License

NotificationsYou must be signed in to change notification settings

sdpython/onnx-array-api

 
 

Repository files navigation

https://github.com/sdpython/onnx-array-api/raw/main/_doc/_static/logo.png

onnx-array-api: APIs to create ONNX Graphs

https://dev.azure.com/xavierdupre3/onnx-array-api/_apis/build/status/sdpython.onnx-array-apiGitHub IssuesMIT Licensesizehttps://codecov.io/gh/sdpython/onnx-array-api/branch/main/graph/badge.svg?token=Wb9ZGDta8J

onnx-array-api implements APIs to create custom ONNX graphs.The objective is to speed up the implementation of converter libraries.The first one matchesnumpy API.It gives the user the ability to convert functions writtenfollowing the numpy API to convert that function into ONNX aswell as to execute it.

importnumpyasnpfromonnx_array_api.npximportabsolute,jit_onnxfromonnx_array_api.plotting.text_plotimportonnx_simple_text_plotdefl1_loss(x,y):returnabsolute(x-y).sum()defl2_loss(x,y):return ((x-y)**2).sum()defmyloss(x,y):returnl1_loss(x[:,0],y[:,0])+l2_loss(x[:,1],y[:,1])jitted_myloss=jit_onnx(myloss)x=np.array([[0.1,0.2], [0.3,0.4]],dtype=np.float32)y=np.array([[0.11,0.22], [0.33,0.44]],dtype=np.float32)res=jitted_myloss(x,y)print(res)print(onnx_simple_text_plot(jitted_myloss.get_onnx()))
[0.042]opset: domain='' version=18input: name='x0' type=dtype('float32') shape=['', '']input: name='x1' type=dtype('float32') shape=['', '']Sub(x0, x1) -> r__0  Abs(r__0) -> r__1    ReduceSum(r__1, keepdims=0) -> r__2output: name='r__2' type=dtype('float32') shape=None

It supports eager mode as well:

importnumpyasnpfromonnx_array_api.npximportabsolute,eager_onnxdefl1_loss(x,y):err=absolute(x-y).sum()print(f"l1_loss={err.numpy()}")returnerrdefl2_loss(x,y):err= ((x-y)**2).sum()print(f"l2_loss={err.numpy()}")returnerrdefmyloss(x,y):returnl1_loss(x[:,0],y[:,0])+l2_loss(x[:,1],y[:,1])eager_myloss=eager_onnx(myloss)x=np.array([[0.1,0.2], [0.3,0.4]],dtype=np.float32)y=np.array([[0.11,0.22], [0.33,0.44]],dtype=np.float32)res=eager_myloss(x,y)print(res)
l1_loss=[0.04]l2_loss=[0.002][0.042]

The second API orLight API tends to do every thing in one line.The euclidean distance looks like the following:

import numpy as npfrom onnx_array_api.light_api import startfrom onnx_array_api.plotting.text_plot import onnx_simple_text_plotmodel = (    start()    .vin("X")    .vin("Y")    .bring("X", "Y")    .Sub()    .rename("dxy")    .cst(np.array([2], dtype=np.int64), "two")    .bring("dxy", "two")    .Pow()    .ReduceSum()    .rename("Z")    .vout()    .to_onnx())

The library is released onpypi/onnx-array-apiand its documentation is published atAPIs to create ONNX Graphs.

About

Array APIs to write ONNX Graphs

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors2

  •  
  •  

Languages


[8]ページ先頭

©2009-2025 Movatter.jp