Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitdd11424

Browse files
authored
Fixes light API for operators with two outputs (#45)
* fix operators with two outputs* version* add more checks
1 parent70d6f64 commitdd11424

File tree

7 files changed

+166
-49
lines changed

7 files changed

+166
-49
lines changed

‎CHANGELOGS.rst‎

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,11 @@
11
Change Logs
22
===========
33

4+
0.1.3
5+
+++++
6+
7+
*:pr:`45`: fixes light API for operators with two outputs
8+
49
0.1.2
510
+++++
611

‎_unittests/ut_light_api/test_light_api.py‎

Lines changed: 39 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -402,6 +402,45 @@ def test_operator_bool(self):
402402
got=ref.run(None, {"X":a,"Y":b})[0]
403403
self.assertEqualArray(f(a,b),got)
404404

405+
deftest_topk(self):
406+
onx= (
407+
start()
408+
.vin("X",np.float32)
409+
.vin("K",np.int64)
410+
.bring("X","K")
411+
.TopK()
412+
.rename("Values","Indices")
413+
.vout()
414+
.to_onnx()
415+
)
416+
self.assertIsInstance(onx,ModelProto)
417+
ref=ReferenceEvaluator(onx)
418+
x=np.array([[0,1,2,3], [9,8,7,6]],dtype=np.float32)
419+
k=np.array([2],dtype=np.int64)
420+
got=ref.run(None, {"X":x,"K":k})
421+
self.assertEqualArray(np.array([[3,2], [9,8]],dtype=np.float32),got[0])
422+
self.assertEqualArray(np.array([[3,2], [0,1]],dtype=np.int64),got[1])
423+
424+
deftest_topk_reverse(self):
425+
onx= (
426+
start()
427+
.vin("X",np.float32)
428+
.vin("K",np.int64)
429+
.bring("X","K")
430+
.TopK(largest=0)
431+
.rename("Values","Indices")
432+
.vout()
433+
.to_onnx()
434+
)
435+
self.assertIsInstance(onx,ModelProto)
436+
ref=ReferenceEvaluator(onx)
437+
x=np.array([[0,1,2,3], [9,8,7,6]],dtype=np.float32)
438+
k=np.array([2],dtype=np.int64)
439+
got=ref.run(None, {"X":x,"K":k})
440+
self.assertEqualArray(np.array([[0,1], [6,7]],dtype=np.float32),got[0])
441+
self.assertEqualArray(np.array([[0,1], [3,2]],dtype=np.int64),got[1])
442+
405443

406444
if__name__=="__main__":
445+
# TestLightApi().test_topk()
407446
unittest.main(verbosity=2)

‎onnx_array_api/__init__.py‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,5 +3,5 @@
33
APIs to create ONNX Graphs.
44
"""
55

6-
__version__="0.1.2"
6+
__version__="0.1.3"
77
__author__="Xavier Dupré"

‎onnx_array_api/light_api/_op_var.py‎

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ def ArgMin(
3030

3131
defAveragePool(
3232
self,
33-
auto_pad:str=b"NOTSET",
33+
auto_pad:str="NOTSET",
3434
ceil_mode:int=0,
3535
count_include_pad:int=0,
3636
dilations:Optional[List[int]]=None,
@@ -68,7 +68,7 @@ def Cast(self, saturate: int = 1, to: int = 0) -> "Var":
6868
defCelu(self,alpha:float=1.0)->"Var":
6969
returnself.make_node("Celu",self,alpha=alpha)
7070

71-
defDepthToSpace(self,blocksize:int=0,mode:str=b"DCR")->"Var":
71+
defDepthToSpace(self,blocksize:int=0,mode:str="DCR")->"Var":
7272
returnself.make_node("DepthToSpace",self,blocksize=blocksize,mode=mode)
7373

7474
defDynamicQuantizeLinear(
@@ -137,7 +137,7 @@ def LpNormalization(self, axis: int = -1, p: int = 2) -> "Var":
137137

138138
defLpPool(
139139
self,
140-
auto_pad:str=b"NOTSET",
140+
auto_pad:str="NOTSET",
141141
ceil_mode:int=0,
142142
dilations:Optional[List[int]]=None,
143143
kernel_shape:Optional[List[int]]=None,

‎onnx_array_api/light_api/_op_vars.py‎

Lines changed: 25 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ class OpsVars:
66
Operators taking multiple inputs.
77
"""
88

9-
defBitShift(self,direction:str=b"")->"Var":
9+
defBitShift(self,direction:str="")->"Var":
1010
returnself.make_node("BitShift",*self.vars_,direction=direction)
1111

1212
defCenterCropPad(self,axes:Optional[List[int]]=None)->"Var":
@@ -42,7 +42,7 @@ def Concat(self, axis: int = 0) -> "Var":
4242

4343
defConv(
4444
self,
45-
auto_pad:str=b"NOTSET",
45+
auto_pad:str="NOTSET",
4646
dilations:Optional[List[int]]=None,
4747
group:int=1,
4848
kernel_shape:Optional[List[int]]=None,
@@ -66,7 +66,7 @@ def Conv(
6666

6767
defConvInteger(
6868
self,
69-
auto_pad:str=b"NOTSET",
69+
auto_pad:str="NOTSET",
7070
dilations:Optional[List[int]]=None,
7171
group:int=1,
7272
kernel_shape:Optional[List[int]]=None,
@@ -90,7 +90,7 @@ def ConvInteger(
9090

9191
defConvTranspose(
9292
self,
93-
auto_pad:str=b"NOTSET",
93+
auto_pad:str="NOTSET",
9494
dilations:Optional[List[int]]=None,
9595
group:int=1,
9696
kernel_shape:Optional[List[int]]=None,
@@ -155,7 +155,7 @@ def DeformConv(
155155
defDequantizeLinear(self,axis:int=1)->"Var":
156156
returnself.make_node("DequantizeLinear",*self.vars_,axis=axis)
157157

158-
defEinsum(self,equation:str=b"")->"Var":
158+
defEinsum(self,equation:str="")->"Var":
159159
returnself.make_node("Einsum",*self.vars_,equation=equation)
160160

161161
defGather(self,axis:int=0)->"Var":
@@ -174,8 +174,8 @@ def Gemm(
174174
defGridSample(
175175
self,
176176
align_corners:int=0,
177-
mode:str=b"bilinear",
178-
padding_mode:str=b"zeros",
177+
mode:str="bilinear",
178+
padding_mode:str="zeros",
179179
)->"Var":
180180
returnself.make_node(
181181
"GridSample",
@@ -240,7 +240,7 @@ def Mod(self, fmod: int = 0) -> "Var":
240240
returnself.make_node("Mod",*self.vars_,fmod=fmod)
241241

242242
defNegativeLogLikelihoodLoss(
243-
self,ignore_index:int=0,reduction:str=b"mean"
243+
self,ignore_index:int=0,reduction:str="mean"
244244
)->"Var":
245245
returnself.make_node(
246246
"NegativeLogLikelihoodLoss",
@@ -257,12 +257,12 @@ def NonMaxSuppression(self, center_point_box: int = 0) -> "Var":
257257
defOneHot(self,axis:int=-1)->"Var":
258258
returnself.make_node("OneHot",*self.vars_,axis=axis)
259259

260-
defPad(self,mode:str=b"constant")->"Var":
260+
defPad(self,mode:str="constant")->"Var":
261261
returnself.make_node("Pad",*self.vars_,mode=mode)
262262

263263
defQLinearConv(
264264
self,
265-
auto_pad:str=b"NOTSET",
265+
auto_pad:str="NOTSET",
266266
dilations:Optional[List[int]]=None,
267267
group:int=1,
268268
kernel_shape:Optional[List[int]]=None,
@@ -431,13 +431,13 @@ def Resize(
431431
self,
432432
antialias:int=0,
433433
axes:Optional[List[int]]=None,
434-
coordinate_transformation_mode:str=b"half_pixel",
434+
coordinate_transformation_mode:str="half_pixel",
435435
cubic_coeff_a:float=-0.75,
436436
exclude_outside:int=0,
437437
extrapolation_value:float=0.0,
438-
keep_aspect_ratio_policy:str=b"stretch",
439-
mode:str=b"nearest",
440-
nearest_mode:str=b"round_prefer_floor",
438+
keep_aspect_ratio_policy:str="stretch",
439+
mode:str="nearest",
440+
nearest_mode:str="round_prefer_floor",
441441
)->"Var":
442442
axes=axesor []
443443
returnself.make_node(
@@ -456,8 +456,8 @@ def Resize(
456456

457457
defRoiAlign(
458458
self,
459-
coordinate_transformation_mode:str=b"half_pixel",
460-
mode:str=b"avg",
459+
coordinate_transformation_mode:str="half_pixel",
460+
mode:str="avg",
461461
output_height:int=1,
462462
output_width:int=1,
463463
sampling_ratio:int=0,
@@ -480,12 +480,12 @@ def STFT(self, onesided: int = 1) -> "Var":
480480
defScatter(self,axis:int=0)->"Var":
481481
returnself.make_node("Scatter",*self.vars_,axis=axis)
482482

483-
defScatterElements(self,axis:int=0,reduction:str=b"none")->"Var":
483+
defScatterElements(self,axis:int=0,reduction:str="none")->"Var":
484484
returnself.make_node(
485485
"ScatterElements",*self.vars_,axis=axis,reduction=reduction
486486
)
487487

488-
defScatterND(self,reduction:str=b"none")->"Var":
488+
defScatterND(self,reduction:str="none")->"Var":
489489
returnself.make_node("ScatterND",*self.vars_,reduction=reduction)
490490

491491
defSlice(
@@ -498,13 +498,18 @@ def Slice(
498498

499499
defTopK(self,axis:int=-1,largest:int=1,sorted:int=1)->"Vars":
500500
returnself.make_node(
501-
"TopK",*self.vars_,axis=axis,largest=largest,sorted=sorted
501+
"TopK",
502+
*self.vars_,
503+
axis=axis,
504+
largest=largest,
505+
sorted=sorted,
506+
n_outputs=2,
502507
)
503508

504509
defTrilu(self,upper:int=1)->"Var":
505510
returnself.make_node("Trilu",*self.vars_,upper=upper)
506511

507-
defUpsample(self,mode:str=b"nearest")->"Var":
512+
defUpsample(self,mode:str="nearest")->"Var":
508513
returnself.make_node("Upsample",*self.vars_,mode=mode)
509514

510515
defWhere(

‎onnx_array_api/light_api/model.py‎

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,8 +28,8 @@ class OnnxGraph:
2828
This API is meant to be light and allows the description of a graph.
2929
3030
:param opset: main opset version
31+
:param opsets: other opsets as a dictionary
3132
:param is_function: a :class:`onnx.ModelProto` or a :class:`onnx.FunctionProto`
32-
:param opsets: others opsets as a dictionary
3333
"""
3434

3535
def__init__(

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp