|
22 | 22 |
|
23 | 23 | @npxapi_function |
24 | 24 | def_min_max( |
25 | | -x:TensorType[ElemType.numerics,"T"] |
| 25 | +x:TensorType[ElemType.numerics,"T"], |
26 | 26 | )->TupleType[TensorType[ElemType.numerics,"T"],TensorType[ElemType.numerics,"T"]]: |
27 | 27 | returntuple_var(var(x,op="ReduceMin"),var(x,op="ReduceMax")) |
28 | 28 |
|
29 | 29 |
|
30 | 30 | @npxapi_inline |
31 | 31 | def_min_max_inline( |
32 | | -x:TensorType[ElemType.numerics,"T"] |
| 32 | +x:TensorType[ElemType.numerics,"T"], |
33 | 33 | )->TupleType[TensorType[ElemType.numerics,"T"],TensorType[ElemType.numerics,"T"]]: |
34 | 34 | returntuple_var(var(x,op="ReduceMin"),var(x,op="ReduceMax")) |
35 | 35 |
|
36 | 36 |
|
37 | 37 | @npxapi_function |
38 | 38 | defabsolute( |
39 | | -x:TensorType[ElemType.numerics,"T"] |
| 39 | +x:TensorType[ElemType.numerics,"T"], |
40 | 40 | )->TensorType[ElemType.numerics,"T"]: |
41 | 41 | "See :func:`numpy.absolute`." |
42 | 42 | returnvar(x,op="Abs") |
@@ -90,7 +90,7 @@ def log1p(x: TensorType[ElemType.floats, "T"]) -> TensorType[ElemType.floats, "T |
90 | 90 |
|
91 | 91 | @npxapi_function |
92 | 92 | defnegative( |
93 | | -x:TensorType[ElemType.numerics,"T"] |
| 93 | +x:TensorType[ElemType.numerics,"T"], |
94 | 94 | )->TensorType[ElemType.numerics,"T"]: |
95 | 95 | "See :func:`numpy.negative`." |
96 | 96 | returnvar(x,op="Neg") |
|