- Notifications
You must be signed in to change notification settings - Fork416
Pandas integration with sklearn
License
scikit-learn-contrib/sklearn-pandas
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This module provides a bridge betweenScikit-Learn's machine learning methods andpandas-style Data Frames.In particular, it provides a way to mapDataFrame
columns to transformations, which are later recombined into features.
You can installsklearn-pandas
withpip
:
# pip install sklearn-pandas
or conda-forge:
# conda install -c conda-forge sklearn-pandas
The examples in this file double as basic sanity tests. To run them, usedoctest
, which is included with python:
# python -m doctest README.rst
Import what you need from thesklearn_pandas
package. The choices are:
DataFrameMapper
, a class for mapping pandas data frame columns to different sklearn transformations
For this demonstration, we will import both:
>>>fromsklearn_pandasimportDataFrameMapper
For these examples, we'll also use pandas, numpy, and sklearn:
>>>importpandasaspd>>>importnumpyasnp>>>importsklearn.preprocessing,sklearn.decomposition, \...sklearn.linear_model,sklearn.pipeline,sklearn.metrics, \...sklearn.compose>>>fromsklearn.feature_extraction.textimportCountVectorizer
Normally you'll read the data from a file, but for demonstration purposes we'll create a data frame from a Python dict:
>>>data=pd.DataFrame({'pet': ['cat','dog','dog','fish','cat','dog','cat','fish'],...'children': [4.,6,3,3,2,3,5,4],...'salary': [90.,24,44,27,32,59,36,27]})
- The mapper takes a list of tuples. Each tuple has three elements:
- column name(s): The first element is a column name from the pandas DataFrame, or a list containing one or multiple columns (we will see an example with multiple columns later) or an instance of a callable function such asmake_column_selector.
- transformer(s): The second element is an object which will perform the transformation which will be applied to that column.
- attributes: The third one is optional and is a dictionary containing the transformation options, if applicable (see "custom column names for transformed features" below).
Let's see an example:
>>>mapper=DataFrameMapper([... ('pet',sklearn.preprocessing.LabelBinarizer()),... (['children'],sklearn.preprocessing.StandardScaler())... ])
The difference between specifying the column selector as'column'
(as a simple string) and['column']
(as a list with one element) is the shape of the array that is passed to the transformer. In the first case, a one dimensional array will be passed, while in the second case it will be a 2-dimensional array with one column, i.e. a column vector.
This behaviour mimics the same pattern as pandas' dataframes__getitem__
indexing:
>>>data['children'].shape(8,)>>>data[['children']].shape(8,1)
Be aware that some transformers expect a 1-dimensional input (the label-oriented ones) while some others, likeOneHotEncoder
orImputer
, expect 2-dimensional input, with the shape[n_samples, n_features]
.
We can use thefit_transform
shortcut to both fit the model and see what transformed data looks like. In this and the other examples, output is rounded to two digits withnp.round
to account for rounding errors on different hardware:
>>>np.round(mapper.fit_transform(data.copy()),2)array([[1. ,0. ,0. ,0.21], [0. ,1. ,0. ,1.88], [0. ,1. ,0. ,-0.63], [0. ,0. ,1. ,-0.63], [1. ,0. ,0. ,-1.46], [0. ,1. ,0. ,-0.63], [1. ,0. ,0. ,1.04], [0. ,0. ,1. ,0.21]])
Note that the first three columns are the output of theLabelBinarizer
(corresponding tocat
,dog
, andfish
respectively) and the fourth column is the standardized value for the number of children. In general, the columns are ordered according to the order given when theDataFrameMapper
is constructed.
Now that the transformation is trained, we confirm that it works on new data:
>>>sample=pd.DataFrame({'pet': ['cat'],'children': [5.]})>>>np.round(mapper.transform(sample),2)array([[1. ,0. ,0. ,1.04]])
In certain cases, like when studying the feature importances for some model,we want to be able to associate the original features to the ones generated bythe dataframe mapper. We can do so by inspecting the automatically generatedtransformed_names_
attribute of the mapper after transformation:
>>>mapper.transformed_names_['pet_cat','pet_dog','pet_fish','children']
We can provide a custom name for the transformed features, to be used insteadof the automatically generated one, by specifying it as the third argumentof the feature definition:
>>>mapper_alias=DataFrameMapper([... (['children'],sklearn.preprocessing.StandardScaler(),... {'alias':'children_scaled'})... ])>>> _=mapper_alias.fit_transform(data.copy())>>>mapper_alias.transformed_names_['children_scaled']
Alternatively, you can also specify prefix and/or suffix to add to the column name. For example:
>>>mapper_alias=DataFrameMapper([... (['children'],sklearn.preprocessing.StandardScaler(), {'prefix':'standard_scaled_'}),... (['children'],sklearn.preprocessing.StandardScaler(), {'suffix':'_raw'})... ])>>> _=mapper_alias.fit_transform(data.copy())>>>mapper_alias.transformed_names_['standard_scaled_children','children_raw']
In some situations the columns are not known before hand and we would like to dynamically select them during the fit operation. As shown below, in such situations you can provide either a custom callable or usemake_column_selector.
>>>classGetColumnsStartingWith:...def__init__(self,start_str):...self.pattern=start_str......def__call__(self,X:pd.DataFrame=None):...return [cforcinX.columnsifc.startswith(self.pattern)]...>>>df=pd.DataFrame({...'sepal length (cm)': [1.0,2.0,3.0],...'sepal width (cm)': [1.0,2.0,3.0],...'petal length (cm)': [1.0,2.0,3.0],...'petal width (cm)': [1.0,2.0,3.0]... })>>>t=DataFrameMapper([... (...sklearn.compose.make_column_selector(dtype_include=float),...sklearn.preprocessing.StandardScaler(),... {'alias':'x'}... ),... (...GetColumnsStartingWith('petal'),...None,... {'alias':'petal'}... )],df_out=True,default=False)>>>t.fit(df).transform(df).shape(3,6)>>>t.transformed_names_['x_0','x_1','x_2','x_3','petal_0','petal_1']
Above we use make_column_selector to select all columns that are of type float and also use a custom callable function to select columns that start with the word 'petal'.
By default the transformers are passed a numpy array of the selected columnsas input. This is becausesklearn
transformers are historically designed towork with numpy arrays, not with pandas dataframes, even though their basicindexing interfaces are similar.
However we can pass a dataframe/series to the transformers to handle customcases initializing the dataframe mapper withinput_df=True
:
>>>fromsklearn.baseimportTransformerMixin>>>classDateEncoder(TransformerMixin):...deffit(self,X,y=None):...returnself......deftransform(self,X):...dt=X.dt...returnpd.concat([dt.year,dt.month,dt.day],axis=1)>>>dates_df=pd.DataFrame(... {'dates':pd.date_range('2015-10-30','2015-11-02')})>>>mapper_dates=DataFrameMapper([... ('dates',DateEncoder())... ],input_df=True)>>>mapper_dates.fit_transform(dates_df)array([[2015,10,30], [2015,10,31], [2015,11,1], [2015,11,2]])
We can also specify this option per group of columns instead of for thewhole mapper:
>>>mapper_dates=DataFrameMapper([... ('dates',DateEncoder(), {'input_df':True})... ])>>>mapper_dates.fit_transform(dates_df)array([[2015,10,30], [2015,10,31], [2015,11,1], [2015,11,2]])
By default the output of the dataframe mapper is a numpy array. This is so because most sklearn estimators expect a numpy array as input. If however we want the output of the mapper to be a dataframe, we can do so using the parameterdf_out
when creating the mapper:
>>>mapper_df=DataFrameMapper([... ('pet',sklearn.preprocessing.LabelBinarizer()),... (['children'],sklearn.preprocessing.StandardScaler())... ],df_out=True)>>>np.round(mapper_df.fit_transform(data.copy()),2)pet_catpet_dogpet_fishchildren01000.2110101.882010-0.633001-0.634100-1.465010-0.6361001.0470010.21
The names for the columns are the same ones present in thetransformed_names_
attribute.
Note this does not work together with thedefault=True
orsparse=True
arguments to the mapper.
Sometimes it is required to drop a specific column/ list of columns.For this purpose,drop_cols
argument forDataFrameMapper
can be used.Default value isNone
:
>>>mapper_df=DataFrameMapper([... ('pet',sklearn.preprocessing.LabelBinarizer()),... (['children'],sklearn.preprocessing.StandardScaler())... ],drop_cols=['salary'])
Now runningfit_transform
will run transformations on 'pet' and 'children' and drop 'salary' column:
>>>np.round(mapper_df.fit_transform(data.copy()),1)array([[1. ,0. ,0. ,0.2], [0. ,1. ,0. ,1.9], [0. ,1. ,0. ,-0.6], [0. ,0. ,1. ,-0.6], [1. ,0. ,0. ,-1.5], [0. ,1. ,0. ,-0.6], [1. ,0. ,0. ,1. ], [0. ,0. ,1. ,0.2]])
Transformations may require multiple input columns. In these
Transformations may require multiple input columns. In these cases, the column names can be specified in a list:
>>>mapper2=DataFrameMapper([... (['children','salary'],sklearn.decomposition.PCA(1))... ])
Now runningfit_transform
will run PCA on thechildren
andsalary
columns and return the first principal component:
>>>np.round(mapper2.fit_transform(data.copy()),1)array([[47.6], [-18.4], [1.6], [-15.4], [-10.4], [16.6], [-6.4], [-15.4]])
Multiple transformers can be applied to the same column specifying themin a list:
>>>fromsklearn.imputeimportSimpleImputer>>>mapper3=DataFrameMapper([... (['age'], [SimpleImputer(),...sklearn.preprocessing.StandardScaler()])])>>>data_3=pd.DataFrame({'age': [1,np.nan,3]})>>>mapper3.fit_transform(data_3)array([[-1.22474487], [0. ], [1.22474487]])
Only columns that are listed in the DataFrameMapper are kept. To keep a column but don't apply any transformation to it, use None as transformer:
>>>mapper3=DataFrameMapper([... ('pet',sklearn.preprocessing.LabelBinarizer()),... ('children',None)... ])>>>np.round(mapper3.fit_transform(data.copy()))array([[1.,0.,0.,4.], [0.,1.,0.,6.], [0.,1.,0.,3.], [0.,0.,1.,3.], [1.,0.,0.,2.], [0.,1.,0.,3.], [1.,0.,0.,5.], [0.,0.,1.,4.]])
A default transformer can be applied to columns not explicitly selectedpassing it as thedefault
argument to the mapper:
>>>mapper4=DataFrameMapper([... ('pet',sklearn.preprocessing.LabelBinarizer()),... ('children',None)... ],default=sklearn.preprocessing.StandardScaler())>>>np.round(mapper4.fit_transform(data.copy()),1)array([[1. ,0. ,0. ,4. ,2.3], [0. ,1. ,0. ,6. ,-0.9], [0. ,1. ,0. ,3. ,0.1], [0. ,0. ,1. ,3. ,-0.7], [1. ,0. ,0. ,2. ,-0.5], [0. ,1. ,0. ,3. ,0.8], [1. ,0. ,0. ,5. ,-0.3], [0. ,0. ,1. ,4. ,-0.7]])
Usingdefault=False
(the default) drops unselected columns. Usingdefault=None
pass the unselected columns unchanged.
Sometimes it is required to apply the same transformation to several dataframe columns.To simplify this process, the package providesgen_features
function which accepts a listof columns and feature transformer class (or list of classes), and generates a feature definition,acceptable byDataFrameMapper
.
For example, consider a dataset with three categorical columns, 'col1', 'col2', and 'col3',To binarize each of them, one could pass column names andLabelBinarizer
transformer classinto generator, and then use returned definition asfeatures
argument forDataFrameMapper
:
>>>fromsklearn_pandasimportgen_features>>>feature_def=gen_features(...columns=['col1','col2','col3'],...classes=[sklearn.preprocessing.LabelEncoder]... )>>>feature_def[('col1', [LabelEncoder()], {}), ('col2', [LabelEncoder()], {}), ('col3', [LabelEncoder()], {})]>>>mapper5=DataFrameMapper(feature_def)>>>data5=pd.DataFrame({...'col1': ['yes','no','yes'],...'col2': [True,False,False],...'col3': ['one','two','three']... })>>>mapper5.fit_transform(data5)array([[1,1,0], [0,0,2], [1,0,1]])
If it is required to override some of transformer parameters, then a dict with 'class' key andtransformer parameters should be provided. For example, consider a dataset with missing values.Then the following code could be used to override default imputing strategy:
>>>fromsklearn.imputeimportSimpleImputer>>>importnumpyasnp>>>feature_def=gen_features(...columns=[['col1'], ['col2'], ['col3']],...classes=[{'class':SimpleImputer,'strategy':'most_frequent'}]... )>>>mapper6=DataFrameMapper(feature_def)>>>data6=pd.DataFrame({...'col1': [np.nan,1,1,2,3],...'col2': [True,False,np.nan,np.nan,True],...'col3': [0,0,0,np.nan,np.nan]... })>>>mapper6.fit_transform(data6)array([[1.0,True,0.0], [1.0,False,0.0], [1.0,True,0.0], [2.0,True,0.0], [3.0,True,0.0]],dtype=object)
You can also specify global prefix or suffix for the generated transformed column names using the prefix and suffixparameters:
>>>feature_def=gen_features(...columns=['col1','col2','col3'],...classes=[sklearn.preprocessing.LabelEncoder],...prefix="lblencoder_"... )>>>mapper5=DataFrameMapper(feature_def)>>>data5=pd.DataFrame({...'col1': ['yes','no','yes'],...'col2': [True,False,False],...'col3': ['one','two','three']... })>>> _=mapper5.fit_transform(data5)>>>mapper5.transformed_names_['lblencoder_col1','lblencoder_col2','lblencoder_col3']
DataFrameMapper
supports transformers that require both X and y arguments. An example of this is feature selection. Treating the 'pet' column as the target, we will select the column that best predicts it.
>>>fromsklearn.feature_selectionimportSelectKBest,chi2>>>mapper_fs=DataFrameMapper([(['children','salary'],SelectKBest(chi2,k=1))])>>>mapper_fs.fit_transform(data[['children','salary']],data['pet'])array([[90.], [24.], [44.], [27.], [32.], [59.], [36.], [27.]])
ADataFrameMapper
will return a dense feature array by default. Settingsparse=True
in the mapper will returna sparse array whenever any of the extracted features is sparse. Example:
>>>mapper5=DataFrameMapper([... ('pet',CountVectorizer()),... ],sparse=True)>>> type(mapper5.fit_transform(data))<class'scipy.sparse.csr.csr_matrix'>
The stacking of the sparse features is done without ever densifying them.
While you can useFunctionTransformation
to generate arbitrary transformers, it can present serialization issueswhen pickling. UseNumericalTransformer
instead, which takes the function name as a string parameter and hencecan be easily serialized.
>>>fromsklearn_pandasimportNumericalTransformer>>>mapper5=DataFrameMapper([... ('children',NumericalTransformer('log')),... ])>>>mapper5.fit_transform(data)array([[1.38629436], [1.79175947], [1.09861229], [1.09861229], [0.69314718], [1.09861229], [1.60943791], [1.38629436]])
You can change log level to info to print time take to fit/transform features. Setting it to higher level will stop printing elapsed time.Below example shows how to change logging level.
>>>importlogging>>>logging.getLogger('sklearn_pandas').setLevel(logging.INFO)
- Added an ability to provide callable functions instead of static column list.
- Removed test for Python 3.6 and added Python 3.9
- Added deprecation warning for NumericalTransformer
- Fixed pickling issue causing integration issues with Baikal.
- Started publishing package to conda repo
- Explicitly handling serialization (#224)
- document fixes
- Making transform function thread safe (#194)
- Switched to nox for unit testing (#226)
- Added elapsed time information for each feature.
- Fix DataFrameMapper drop_cols attribute naming consistency with scikit-learn and initialization.
- Added an option to explicitly drop columns.
- Deprecated support for Python < 3.6.
- Deprecated support for old versions of scikit-learn, pandas and numpy. Please check setup.py for minimum requirement.
- Removed CategoricalImputer, cross_val_score and GridSearchCV. All these functionality now exists as part ofscikit-learn. Please use SimpleImputer instead of CategoricalImputer. AlsoCross validation from sklearn now supports dataframe so we don't need to use cross validation wrapper provided overhere.
- Added
NumericalTransformer
for common numerical transformations. Currently it implements log and log1ptransformation. - Added prefix and suffix options. See examples above. These are usually helpful when using gen_features.
- Added
drop_cols
argument to DataframeMapper. This can be used to explicitly drop columns
- Add
FunctionTransformer
class (#117). - Fix column names derivation for dataframes with multi-index or non-stringcolumns (#166).
- Change behaviour of DataFrameMapper's fit_transform method to invoke each underlying transformers'native fit_transform if implemented (#150).
- Fix issues with unicode names in
get_names
(#160). - Update to build using
numpy==1.14
andpython==3.6
(#154). - Add
strategy
andfill_value
parameters toCategoricalImputer
to allow imputingwith values other than the mode (#144),(#161). - Preserve input data types when no transform is supplied (#138).
- Add column name to exception during fit/transform (#110).
- Add
gen_feature
helper function to help generating the same transformation for multiple columns (#126).
- Allow inputting a dataframe/series per group of columns.
- Get feature names also from
estimator.get_feature_names()
if present. - Attempt to derive feature names from individual transformers when applying alist of transformers.
- Do not mutate features in
__init__
to be compatible withsklearn>=0.20
(#76).
- Allow specifying a custom name (alias) for transformed columns (#83).
- Capture output columns generated names in
transformed_names_
attribute (#78). - Add
CategoricalImputer
that replaces null-like values with the modefor string-like columns. - Add
input_df
init argument to allow inputting a dataframe/series to thetransformers instead of a numpy array (#60).
- Make the mapper return dataframes when
df_out=True
(#70, #74). - Update imports to avoid deprecation warnings in sklearn 0.18 (#68).
- Deprecate custom cross-validation shim classes.
- Require
scikit-learn>=0.15.0
. Resolves #49. - Allow applying a default transformer to columns not selected explicitly inthe mapper. Resolves #55.
- Allow specifying an optional
y
argument during transform forsupervised transformations. Resolves #58.
- Delete obsolete
PassThroughTransformer
. If no transformation is desired for a given column, useNone
as transformer. - Factor out code in several modules, to avoid having everything in
__init__.py
. - Use custom
TransformerPipeline
class to allow transformation steps accepting only a X argument. Fixes #46. - Add compatibility shim for unpickling mappers with list of transformers created before 1.0.0. Fixes #45.
- Change version numbering scheme to SemVer.
- Use
sklearn.pipeline.Pipeline
instead of copying its code. Resolves #43. - Raise
KeyError
when selecting unexistent columns in the dataframe. Fixes #30. - Return sparse feature array if any of the features is sparse and
sparse
argument isTrue
. Defaults toFalse
to avoid potential breaking of existing code. Resolves #34. - Return model and prediction in custom CV classes. Fixes #27.
- Allow specifying a list of transformers to use sequentially on the same column.
The code forDataFrameMapper
is based on code originally written byBen Hamner.
Other contributors:
- Ariel Rossanigo (@arielrossanigo)
- Arnau Gil Amat (@arnau126)
- Assaf Ben-David (@AssafBenDavid)
- Brendan Herger (@bjherger)
- Cal Paterson (@calpaterson)
- @defvorfu
- Floris Hoogenboom (@FlorisHoogenboom)
- Gustavo Sena Mafra (@gsmafra)
- Israel Saeta Pérez (@dukebody)
- Jeremy Howard (@jph00)
- Jimmy Wan (@jimmywan)
- Kristof Van Engeland (@kristofve91)
- Olivier Grisel (@ogrisel)
- Paul Butler (@paulgb)
- Richard Miller (@rwjmiller)
- Ritesh Agrawal (@ragrawal)
- @SandroCasagrande
- Timothy Sweetser (@hacktuarial)
- Vitaley Zaretskey (@vzaretsk)
- Zac Stewart (@zacstewart)
- Parul Singh (@paro1234)
- Vincent Heusinkveld (@VHeusinkveld)
About
Pandas integration with sklearn
Resources
License
Uh oh!
There was an error while loading.Please reload this page.