Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

FIX make sure to accept "minority" as a valid strategy in over-samplers#964

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged
glemaitre merged 3 commits intoscikit-learn-contrib:masterfromPrakhyath07:master
Dec 28, 2022
Merged
Show file tree
Hide file tree
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletionsdoc/whats_new/v0.10.rst
View file
Open in desktop
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,20 @@
.. _changes_0_10:

Version 0.10.1
==============

**December 28, 2022**

Changelog
---------

Bug fixes
.........

- Fix a regression in over-sampler where the string `minority` was rejected as
an unvalid sampling strategy.
:pr:`964` by :user:`Prakhyath Bhandary <Prakhyath07>`.

Version 0.10.0
==============

Expand Down
2 changes: 1 addition & 1 deletionimblearn/over_sampling/base.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -61,7 +61,7 @@ class BaseOverSampler(BaseSampler):
_parameter_constraints: dict = {
"sampling_strategy": [
Interval(numbers.Real, 0, 1, closed="right"),
StrOptions({"auto", "majority", "not minority", "not majority", "all"}),
StrOptions({"auto", "minority", "not minority", "not majority", "all"}),
Mapping,
callable,
],
Expand Down
18 changes: 18 additions & 0 deletionsimblearn/over_sampling/tests/test_random_over_sampler.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -7,6 +7,7 @@

import numpy as np
import pytest
from sklearn.datasets import make_classification
from sklearn.utils._testing import (
_convert_container,
assert_allclose,
Expand DownExpand Up@@ -255,3 +256,20 @@ def test_random_over_sampler_shrinkage_error(data, shrinkage, err_msg):
ros = RandomOverSampler(shrinkage=shrinkage)
with pytest.raises(ValueError, match=err_msg):
ros.fit_resample(X, y)


@pytest.mark.parametrize(
"sampling_strategy", ["auto", "minority", "not minority", "not majority", "all"]
)
def test_random_over_sampler_strings(sampling_strategy):
"""Check that we support all supposed strings as `sampling_strategy` in
a sampler inheriting from `BaseOverSampler`."""

X, y = make_classification(
n_samples=100,
n_clusters_per_class=1,
n_classes=3,
weights=[0.1, 0.3, 0.6],
random_state=0,
)
RandomOverSampler(sampling_strategy=sampling_strategy).fit_resample(X, y)
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -7,6 +7,7 @@

import numpy as np
import pytest
from sklearn.datasets import make_classification
from sklearn.utils._testing import assert_array_equal

from imblearn.under_sampling import RandomUnderSampler
Expand DownExpand Up@@ -130,3 +131,20 @@ def test_random_under_sampling_nan_inf():
assert y_res.shape == (6,)
assert X_res.shape == (6, 2)
assert np.any(~np.isfinite(X_res))


@pytest.mark.parametrize(
"sampling_strategy", ["auto", "majority", "not minority", "not majority", "all"]
)
def test_random_under_sampler_strings(sampling_strategy):
"""Check that we support all supposed strings as `sampling_strategy` in
a sampler inheriting from `BaseUnderSampler`."""

X, y = make_classification(
n_samples=100,
n_clusters_per_class=1,
n_classes=3,
weights=[0.1, 0.3, 0.6],
random_state=0,
)
RandomUnderSampler(sampling_strategy=sampling_strategy).fit_resample(X, y)
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -4,6 +4,8 @@
# License: MIT

import numpy as np
import pytest
from sklearn.datasets import make_classification
from sklearn.utils._testing import assert_array_equal

from imblearn.under_sampling import TomekLinks
Expand DownExpand Up@@ -68,3 +70,20 @@ def test_tl_fit_resample():
y_gt = np.array([1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0])
assert_array_equal(X_resampled, X_gt)
assert_array_equal(y_resampled, y_gt)


@pytest.mark.parametrize(
"sampling_strategy", ["auto", "majority", "not minority", "not majority", "all"]
)
def test_tomek_links_strings(sampling_strategy):
"""Check that we support all supposed strings as `sampling_strategy` in
a sampler inheriting from `BaseCleaningSampler`."""

X, y = make_classification(
n_samples=100,
n_clusters_per_class=1,
n_classes=3,
weights=[0.1, 0.3, 0.6],
random_state=0,
)
TomekLinks(sampling_strategy=sampling_strategy).fit_resample(X, y)

[8]ページ先頭

©2009-2025 Movatter.jp