- Notifications
You must be signed in to change notification settings - Fork1.3k
Feature/add mlsmote#707
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.
Already on GitHub?Sign in to your account
Draft
SimonErm wants to merge10 commits intoscikit-learn-contrib:masterChoose a base branch fromSimonErm:feature/addMLSMOTE
base:master
Could not load branches
Branch not found:{{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline, and old review comments may become outdated.
Uh oh!
There was an error while loading.Please reload this page.
Draft
Changes fromall commits
Commits
Show all changes
10 commits Select commitHold shift + click to select a range
802caae
add basic tests for mlsmote
SimonErm9b2ec7f
add mlsmote implementation
SimonErm948da4a
format code
SimonErmbef0487
fix refactor error
SimonErm25eb158
compute imbalance_ratio_per_label just once
SimonErme6c847e
add sparse matrix support for labels
SimonErm4bb3474
calculate imbalance ratio on every run instead once
SimonErm32a7b55
use list comprehension for better performance
SimonErmf134349
fix vdm and add experimental sparse implementation
SimonErm3361578
remove prints
SimonErmFile filter
Filter by extension
Conversations
Failed to load comments.
Loading
Uh oh!
There was an error while loading.Please reload this page.
Jump to
Jump to file
Failed to load files.
Loading
Uh oh!
There was an error while loading.Please reload this page.
Diff view
Diff view
There are no files selected for viewing
2 changes: 2 additions & 0 deletionsimblearn/over_sampling/__init__.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.Learn more about bidirectional Unicode characters
281 changes: 281 additions & 0 deletionsimblearn/over_sampling/_mlsmote.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,281 @@ | ||
import numpy as np | ||
import itertools | ||
import collections | ||
import random | ||
from scipy import sparse | ||
class MLSMOTE: | ||
"""Over-sampling using MLSMOTE. | ||
Parameters | ||
---------- | ||
sampling_strategy: 'ranking','union' or 'intersection' default: 'ranking' | ||
Strategy to generate labelsets | ||
k_neighbors : int or object, default=5 | ||
If ``int``, number of nearest neighbours to used to construct synthetic | ||
samples. | ||
categorical_features : ndarray of shape (n_cat_features,) or (n_features,) | ||
Specified which features are categorical. Can either be: | ||
- array of indices specifying the categorical features; | ||
- mask array of shape (n_features, ) and ``bool`` dtype for which | ||
``True`` indicates the categorical features. | ||
Notes | ||
----- | ||
See the original papers: [1]_ for more details. | ||
References | ||
---------- | ||
.. [1] Charte, F. & Rivera Rivas, Antonio & Del Jesus, María José & Herrera, Francisco. (2015). | ||
MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation. | ||
Knowledge-Based Systems. -. 10.1016/j.knosys.2015.07.019. | ||
""" | ||
def __init__(self, categorical_features, k_neighbors=5, sampling_strategy='ranking'): | ||
self.k_neighbors = k_neighbors | ||
self.sampling_strategy_ = sampling_strategy | ||
self.categorical_features = categorical_features | ||
self.continuous_features_ = None | ||
self.unique_labels = [] | ||
self.labels = [] | ||
self.features = [] | ||
def fit_resample(self, X, y): | ||
self.n_features_ = X.shape[1] | ||
self._validate_estimator() | ||
X_resampled = X.copy() | ||
y_resampled = y.copy() | ||
if sparse.issparse(y): | ||
self.labels = y | ||
self.unique_labels = range(0, y.shape[1]) | ||
else: | ||
self.labels = np.array([np.array(xi) for xi in y]) | ||
self.unique_labels = self._collect_unique_labels(y) | ||
self.features = X | ||
X_synth = [] | ||
y_synth = [] | ||
append_X_synth = X_synth.append | ||
append_y_synth = y_synth.append | ||
mean_ir = self._get_mean_imbalance_ratio() | ||
if sparse.issparse(y): | ||
y_synth = None | ||
for label in self.unique_labels: | ||
irlbl = self._get_imbalance_ratio_per_label(label, y_resampled) | ||
if irlbl > mean_ir: | ||
min_bag = self._get_all_instances_of_label(label) | ||
for sample in min_bag: | ||
distances = self._calc_distances(sample, min_bag) | ||
distances = np.sort(distances, order='distance') | ||
neighbours = distances[:self.k_neighbors] | ||
ref_neigh = np.random.choice(neighbours, 1)[0] | ||
X_new, y_new = self._create_new_sample( | ||
sample, ref_neigh[1], [x[1] for x in neighbours]) | ||
append_X_synth(X_new) | ||
y_resambled = sparse.vstack((y_resampled, y_new)) | ||
return np.concatenate((X_resampled, np.array(X_synth))), y_resampled | ||
else: | ||
for index, label in np.ndenumerate(self.unique_labels): | ||
irlbl = self._get_imbalance_ratio_per_label(label, y_resampled) | ||
if irlbl > mean_ir: | ||
min_bag = self._get_all_instances_of_label(label) | ||
for sample in min_bag: | ||
distances = self._calc_distances(sample, min_bag) | ||
distances = np.sort(distances, order='distance') | ||
neighbours = distances[:self.k_neighbors] | ||
ref_neigh = np.random.choice(neighbours, 1)[0] | ||
X_new, y_new = self._create_new_sample( | ||
sample, ref_neigh[1], [x[1] for x in neighbours]) | ||
append_X_synth(X_new) | ||
append_y_synth(y_new) | ||
return np.concatenate((X_resampled, np.array(X_synth))), np.array(y_resampled.tolist()+y_synth) | ||
def _validate_estimator(self): | ||
categorical_features = np.asarray(self.categorical_features) | ||
if categorical_features.dtype.name == "bool": | ||
self.categorical_features_ = np.flatnonzero(categorical_features) | ||
else: | ||
if any( | ||
[ | ||
cat not in np.arange(self.n_features_) | ||
for cat in categorical_features | ||
] | ||
): | ||
raise ValueError( | ||
"Some of the categorical indices are out of range. Indices" | ||
" should be between 0 and {}".format(self.n_features_) | ||
) | ||
self.categorical_features_ = categorical_features | ||
self.continuous_features_ = np.setdiff1d( | ||
np.arange(self.n_features_), self.categorical_features_ | ||
) | ||
def _collect_unique_labels(self, y): | ||
"""A support function that flattens the labelsets and return one set of unique labels""" | ||
return np.unique(np.array([a for x in y for a in (x if isinstance(x, list) else [x])])) | ||
def _create_new_sample(self, sample_id, ref_neigh_id, neighbour_ids): | ||
sample = self.features[sample_id] | ||
synth_sample = np.copy(sample) | ||
ref_neigh = self.features[ref_neigh_id] | ||
sample_labels = self.labels[sample_id] | ||
for i in range(synth_sample.shape[0]): | ||
if i in self.continuous_features_: | ||
diff = ref_neigh[i]-sample[i] | ||
offset = diff*random.uniform(0, 1) | ||
synth_sample[i] = sample[i]+offset | ||
if i in self.categorical_features_: | ||
synth_sample[i] = self._get_most_frequent_value( | ||
self.features[neighbour_ids, i]) | ||
X = synth_sample | ||
if sparse.issparse(self.labels): | ||
neighbours_labels = self.labels[neighbour_ids] | ||
possible_labels = neighbours_labels.sum(axis=0) | ||
y = np.zeros((1, len(self.unique_labels))) | ||
if self.sampling_strategy_ == 'ranking': | ||
head_index = int((self.k_neighbors + 1)/2) | ||
choosen_labels = possible_labels.nonzero()[1][:head_index] | ||
y[0, choosen_labels] = 1 | ||
if self.sampling_strategy_ == 'union': | ||
choosen_labels = possible_labels.nonzero()[0] | ||
y[choosen_labels] = 1 | ||
if self.sampling_strategy_ == 'intersection': | ||
choosen_labels = sparse.find(possible_labels == len(neighbours_labels)) | ||
y[choosen_labels] = 1 | ||
y = sparse.csr_matrix(y) | ||
else: | ||
neighbours_labels = [] | ||
for ni in neighbour_ids: | ||
neighbours_labels.append(self.labels[ni].tolist()) | ||
labels = [] # sample_labels.tolist() | ||
labels += [a for x in neighbours_labels for a in ( | ||
x if isinstance(x, list) else [x])] | ||
labels = list(set(labels)) | ||
if self.sampling_strategy_ == 'ranking': | ||
head_index = int((self.k_neighbors + 1)/2) | ||
y = labels[:head_index] | ||
if self.sampling_strategy_ == 'union': | ||
y = labels[:] | ||
if self.sampling_strategy_ == 'intersection': | ||
y = list(set.intersection(*neighbours_labels)) | ||
return X, y | ||
def _calc_distances(self, sample, min_bag): | ||
def calc_dist(bag_sample): | ||
nominal_distance = sum([self._get_vdm( | ||
self.features[sample, cat], self.features[bag_sample, cat], cat)for cat in self.categorical_features_]) | ||
ordinal_distance = sum([self._get_euclidean_distance( | ||
self.features[sample, num], self.features[bag_sample, num])for num in self.continuous_features_]) | ||
dist = sum([nominal_distance, ordinal_distance]) | ||
return (dist, bag_sample) | ||
distances = [calc_dist(bag_sample) for bag_sample in min_bag] | ||
dtype = np.dtype([('distance', float), ('index', int)]) | ||
return np.array(distances, dtype=dtype) | ||
def _get_euclidean_distance(self, first, second): | ||
euclidean_distance = np.linalg.norm(first-second) | ||
return euclidean_distance | ||
def _get_vdm(self, first, second, category): | ||
"""A support function to compute the Value Difference Metric(VDM) discribed in https://arxiv.org/pdf/cs/9701101.pdf""" | ||
if sparse.issparse(self.features): | ||
def f_sparse(c): | ||
N_ax = len(sparse.find(self.features[:, category] == first)[0]) | ||
N_ay = len(sparse.find( | ||
self.features[:, category] == second)[0]) | ||
c_instances = self._get_all_instances_of_label(c) | ||
N_axc = len(sparse.find( | ||
self.features[c_instances, category] == first)[0]) | ||
N_ayc = len(sparse.find( | ||
self.features[c_instances, category] == second)[0]) | ||
p = np.square(np.abs((N_axc/N_ax)-(N_ayc/N_ay))) | ||
return p | ||
vdm = np.sum(np.array([f_sparse(c)for c in self.unique_labels])) | ||
return vdm | ||
category_rows = self.features[:, category] | ||
N_ax = len(np.where(category_rows == first)) | ||
N_ay = len(np.where(category_rows == second)) | ||
def f(c): | ||
class_instances = self._get_all_instances_of_label(c) | ||
class_instance_rows = category_rows[class_instances] | ||
N_axc = len(np.where(class_instance_rows == first)[0]) | ||
N_ayc = len(np.where(class_instance_rows == second)[0]) | ||
p = abs((N_axc/N_ax)-(N_ayc/N_ay)) | ||
return p | ||
vdm = np.array([f(c)for c in self.unique_labels]).sum() | ||
return vdm | ||
def _get_all_instances_of_label(self, label): | ||
if sparse.issparse(self.labels): | ||
return self.labels[:, label].nonzero()[0] | ||
instance_ids = [] | ||
append_instance_id = instance_ids.append | ||
for i, label_set in enumerate(self.labels): | ||
if label in label_set: | ||
append_instance_id(i) | ||
return np.array(instance_ids) | ||
def _get_mean_imbalance_ratio(self): | ||
ratio_sum = np.sum(np.array( | ||
list(map(self._get_imbalance_ratio_per_label, self.unique_labels)))) | ||
return ratio_sum/len(self.unique_labels) | ||
def _get_imbalance_ratio_per_label(self, label, labels=None): | ||
sum_h = self._sum_h | ||
if labels is None: | ||
sum_array = np.array([sum_h(l, self.labels) | ||
for l in self.unique_labels]) | ||
ratio = sum_array.max()/sum_h(label, self.labels) | ||
else: | ||
sum_array = np.array([sum_h(l, labels)for l in self.unique_labels]) | ||
ratio = sum_array.max()/sum_h(label, labels) | ||
return ratio | ||
def _sum_h(self, label, labels): | ||
if sparse.issparse(labels): | ||
return labels[:, label].count_nonzero() | ||
h_sum = 0 | ||
def h(l, Y): | ||
if l in Y: | ||
return 1 | ||
else: | ||
return 0 | ||
for label_set in labels: | ||
h_sum += h(label, label_set) | ||
return h_sum | ||
def _get_label_frequencies(self, labels): | ||
""""A support function to get the frequencies of labels""" | ||
frequency_map = np.array(np.unique(labels, return_counts=True)).T | ||
frequencies = np.array([x[1] for x in frequency_map]) | ||
return frequencies | ||
def _get_most_frequent_value(self, values): | ||
""""A support function to get most frequent value if a list of values""" | ||
uniques, indices = np.unique(values, return_inverse=True) | ||
return uniques[np.argmax(np.bincount(indices))] |
Oops, something went wrong.
Uh oh!
There was an error while loading.Please reload this page.
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.