Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

FIX handle full NaT columns properly in Random*Sampler#1059

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to ourterms of service andprivacy statement. We’ll occasionally send you account related emails.

Already on GitHub?Sign in to your account

Merged
glemaitre merged 1 commit intoscikit-learn-contrib:masterfromglemaitre:is/1055
Jan 24, 2024
Merged
Show file tree
Hide file tree
Changes fromall commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletionsdoc/whats_new/v0.12.rst
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -18,6 +18,11 @@ Bug fixes
the number of samples in the minority class.
:pr:`1012` by :user:`Guillaume Lemaitre <glemaitre>`.

- Fix a bug in :class:`~imblearn.under_sampling.RandomUnderSampler` and
:class:`~imblearn.over_sampling.RandomOverSampler` where a column containing only
NaT was not handled correctly.
:pr:`1059` by :user:`Guillaume Lemaitre <glemaitre>`.

Compatibility
.............

Expand Down
23 changes: 23 additions & 0 deletionsimblearn/over_sampling/tests/test_random_over_sampler.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -287,3 +287,26 @@ def test_random_over_sampling_datetime():
pd.testing.assert_series_equal(X_res.dtypes, X.dtypes)
pd.testing.assert_index_equal(X_res.index, y_res.index)
assert_array_equal(y_res.to_numpy(), np.array([0, 0, 0, 1, 1, 1]))


def test_random_over_sampler_full_nat():
"""Check that we can return timedelta columns full of NaT.

Non-regression test for:
https://github.com/scikit-learn-contrib/imbalanced-learn/issues/1055
"""
pd = pytest.importorskip("pandas")

X = pd.DataFrame(
{
"col_str": ["abc", "def", "xyz"],
"col_timedelta": pd.to_timedelta([np.nan, np.nan, np.nan]),
}
)
y = np.array([0, 0, 1])

X_res, y_res = RandomOverSampler().fit_resample(X, y)
assert X_res.shape == (4, 2)
assert y_res.shape == (4,)

assert X_res["col_timedelta"].dtype == "timedelta64[ns]"
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -162,3 +162,26 @@ def test_random_under_sampling_datetime():
pd.testing.assert_series_equal(X_res.dtypes, X.dtypes)
pd.testing.assert_index_equal(X_res.index, y_res.index)
assert_array_equal(y_res.to_numpy(), np.array([0, 1]))


def test_random_under_sampler_full_nat():
"""Check that we can return timedelta columns full of NaT.

Non-regression test for:
https://github.com/scikit-learn-contrib/imbalanced-learn/issues/1055
"""
pd = pytest.importorskip("pandas")

X = pd.DataFrame(
{
"col_str": ["abc", "def", "xyz"],
"col_timedelta": pd.to_timedelta([np.nan, np.nan, np.nan]),
}
)
y = np.array([0, 0, 1])

X_res, y_res = RandomUnderSampler().fit_resample(X, y)
assert X_res.shape == (2, 2)
assert y_res.shape == (2,)

assert X_res["col_timedelta"].dtype == "timedelta64[ns]"
19 changes: 18 additions & 1 deletionimblearn/utils/_validation.py
View file
Open in desktop
Original file line numberDiff line numberDiff line change
Expand Up@@ -66,7 +66,24 @@ def _transfrom_one(self, array, props):
ret = pd.DataFrame.sparse.from_spmatrix(array, columns=props["columns"])
else:
ret = pd.DataFrame(array, columns=props["columns"])
ret = ret.astype(props["dtypes"])

try:
ret = ret.astype(props["dtypes"])
except TypeError:
# We special case the following error:
# https://github.com/scikit-learn-contrib/imbalanced-learn/issues/1055
# There is no easy way to have a generic workaround. Here, we detect
# that we have a column with only null values that is datetime64
# (resulting from the np.vstack of the resampling).
for col in ret.columns:
if (
ret[col].isnull().all()
and ret[col].dtype == "datetime64[ns]"
and props["dtypes"][col] == "timedelta64[ns]"
):
ret[col] = pd.to_timedelta(["NaT"] * len(ret[col]))
# try again
ret = ret.astype(props["dtypes"])
elif type_ == "series":
import pandas as pd

Expand Down

[8]ページ先頭

©2009-2025 Movatter.jp