Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

R Package for Comprehensive Cytokine Data Analysis

License

NotificationsYou must be signed in to change notification settings

saraswatsh/CytoProfile

Repository files navigation

R-CMD-checkCRAN statusCRAN checksDownloadsLast Commit

The goal of CytoProfile is to conduct quality control using biologicalmeaningful cutoff on raw measured values of cytokines. Specifically,test on distributional symmetry to suggest the adopt of transformation.Conduct exploratory analysis including summary statistics, generateenriched barplots, and boxplots. Further, conduct univariate analysisand multivariate analysis for advance analysis.

Installation

Before installation of the CytoProfile package, make sure to installBiocManager and mixOmics packages using:

## install BiocManagerif (!requireNamespace("BiocManager",quietly=TRUE)) install.packages("BiocManager")## install mixOmicsBiocManager::install('mixOmics')

You can install the development version of CytoProfile fromGitHub with:

# install.packages("devtools")devtools::install_github("saraswatsh/CytoProfile")

Install CytoProfile fromCRAN with:

install.packages("CytoProfile")

See change log for the latest updates and changes atNews

Example

Below are examples of using the functions provided in CytoProfile. Anysaved or generated files that are PDF or PNG format will be found at intheFiguresFolder.

1. Data Loading and set up

# Loading all packages required# Data manipulation and reshapinglibrary(dplyr)# For data filtering, grouping, and summarising.library(tidyr)# For reshaping data (e.g., pivot_longer, pivot_wider).# Plotting and visualizationlibrary(ggplot2)# For creating all the ggplot-based visualizations.library(gridExtra)# For arranging multiple plots on a single page.library(ggrepel)# For improved label placement in plots (e.g., volcano plots).library(pheatmap)# For heatmap.2, which is used to generate heatmaps.library(plot3D)# For creating 3D scatter plots in PCA and sPLS-DA analyses.library(reshape2)# For data transformation (e.g., melt) in cross-validation plots.# Statistical analysislibrary(mixOmics)# For multivariate analyses (PCA, sPLS-DA, etc.).library(e1071)# For computing skewness and kurtosis.library(pROC)# For ROC curve generation in machine learning model evaluation.# Machine learninglibrary(xgboost)# For building XGBoost classification models.library(randomForest)# For building Random Forest classification models.library(caret)# For cross-validation and other machine learning utilities.# Package development and document renderinglibrary(knitr)# For knitting RMarkdown files and setting chunk options.library(devtools)# For installing the development version of the package from GitHub.# Load in the CytoProfile packagelibrary(CytoProfile)# Loading in datadata("ExampleData1")data_df<-ExampleData1

2. Exploratory Data Analysis

Boxplots

# Generating boxplots to check for outliers for raw valuescyt_bp(data_df[,-c(1:3)],pdf_title=NULL)

# Removing the first 3 columns to retain only continuous variables.# Generating boxplots to check for outliers for log2 valuescyt_bp(data_df[,-c(1:3)],pdf_title=NULL,scale="log2")

# Using log2 transformation for cytokine values.

Group-Specific Boxplots

data_df<-ExampleData1[,-c(3,5:28)]data_df<-dplyr::filter(data_df,Group=="T2D",Treatment=="Unstimulated")# Raw values for group-specific boxplotscyt_bp2(data_df,pdf_title=NULL,scale=NULL)

# Log2-transformed group-specific boxplotscyt_bp2(data_df,pdf_title=NULL,scale="log2")

3. Skewness and Kurtosis

data_df<-ExampleData1# Histogram of skewness and kurtosis for raw datacyt_skku(data_df[,-c(1:3)],pdf_title=NULL,group_cols=NULL)

# Histogram of skewness and kurtosis with grouping (e.g., "Group")cyt_skku(ExampleData1[,-c(2:3)],pdf_title=NULL,group_cols= c("Group"))

4. Error Bar Plots

Basic Error Bar Plot

# Generating basic error bar plotsdata_df<-ExampleData1cyt_errbp(data_df[, c("Group","CCL.20.MIP.3A","IL.10")],group_col="Group",p_lab=FALSE,es_lab=FALSE,class_symbol=FALSE,x_lab="Cytokines",y_lab="Concentrations in log2 scale",log2=TRUE)

Enriched Error Bar Plot with p-values and Effect Sizes

# Generating Error Bar Plot enriched with p-value and effect sizedata_df<-ExampleData1cyt_errbp(data_df[, c("Group","CCL.20.MIP.3A","IL.10")],group_col="Group",p_lab=TRUE,es_lab=TRUE,class_symbol=TRUE,x_lab="Cytokines",y_lab="Concentrations in log2 scale",log2=TRUE)

5. Univariate Analysis

Two Sample T-test and Mann Whitney U Test

# Performing Testdata_df<-ExampleData1[,-c(3)]data_df<-dplyr::filter(data_df,Group!="ND",Treatment!="Unstimulated")# Test examplecyt_ttest(data_df[, c(1:2,5:6)],scale="log2",verbose=TRUE,format_output=TRUE)#> $results#>   Outcome Categorical      Comparison#> 1   IFN.G       Group   PreT2D vs T2D#> 2   IL.10       Group   PreT2D vs T2D#> 3   IFN.G   Treatment CD3/CD28 vs LPS#> 4   IL.10   Treatment CD3/CD28 vs LPS#>                                                Test Estimate Statistic P_value#> 1 Wilcoxon rank sum test with continuity correction   -2.463    1599.0   0.008#> 2 Wilcoxon rank sum test with continuity correction   -0.956    1625.0   0.012#> 3 Wilcoxon rank sum test with continuity correction    9.024    4132.5   0.000#> 4 Wilcoxon rank sum test with continuity correction    1.690    3091.0   0.000

ANOVA Comparisons Test

# Perform ANOVA comparisons test (example with 2 cytokines)data_df<-ExampleData1[,-c(3)]cyt_anova(data_df[, c(1:2,5:6)],format_output=TRUE)#>                        Outcome Categorical            Comparison  P_adj#> PreT2D-ND                IFN.G       Group             PreT2D-ND 0.0883#> T2D-ND                   IFN.G       Group                T2D-ND 0.9779#> T2D-PreT2D               IFN.G       Group            T2D-PreT2D 0.0550#> PreT2D-ND1               IL.10       Group             PreT2D-ND 0.7745#> T2D-ND1                  IL.10       Group                T2D-ND 0.1546#> T2D-PreT2D1              IL.10       Group            T2D-PreT2D 0.0316#> LPS-CD3/CD28             IFN.G   Treatment          LPS-CD3/CD28 0.0000#> Unstimulated-CD3/CD28    IFN.G   Treatment Unstimulated-CD3/CD28 0.0000#> Unstimulated-LPS         IFN.G   Treatment      Unstimulated-LPS 0.9988#> LPS-CD3/CD281            IL.10   Treatment          LPS-CD3/CD28 0.0000#> Unstimulated-CD3/CD281   IL.10   Treatment Unstimulated-CD3/CD28 0.0000#> Unstimulated-LPS1        IL.10   Treatment      Unstimulated-LPS 0.0001

6. Multivariate Analysis

Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)

# cyt_plsda function.data<-ExampleData1[,-c(3)]data_df<-dplyr::filter(data,Group!="ND"&Treatment=="CD3/CD28")cyt_splsda(data_df,pdf_title=NULL,colors= c("black","purple"),bg=FALSE,scale="log2",ellipse=TRUE,conf_mat=FALSE,var_num=25,cv_opt="loocv",comp_num=2,pch_values= c(16,4),group_col="Group",group_col2="Treatment",roc=TRUE)

Multivariate INTegration Partial Least Squares Discriminant Analysis (MINT sPLS-DA)

# cyt_mint_plsda function.data_df<-ExampleData5[,-c(2,4)]data_df<-dplyr::filter(data_df,Group!="ND")cyt_mint_splsda(data_df,group_col="Group",batch_col="Batch",colors= c("black","purple"),ellipse=TRUE,var_num=25,comp_num=2,scale="log2",verbose=FALSE)

Principal Component Analysis (PCA)

data<-ExampleData1[,-c(3,23)]data_df<- filter(data,Group!="ND"&Treatment!="Unstimulated")cyt_pca(data_df,pdf_title=NULL,colors= c("black","red2"),scale="log2",comp_num=2,pch_values= c(16,4),group_col="Group")

7. Statistical Visualizations

Volcano Plot

# Generating Volcano Plotdata_df<-ExampleData1[,-c(2:3)]cyt_volc(data_df,group_col="Group",cond1="T2D",cond2="ND",fold_change_thresh=2.0,top_labels=15)#> $`T2D vs ND`

Heatmap

# Generating Heat mapcyt_heatmap(data=data_df,scale="log2",# Optional scalingannotation_col="Group",title=NULL)

Dual Flashlight Plot

# Generating dual flashlights plotdata_df<-ExampleData1[,-c(2:3)]dfp<- cyt_dualflashplot(data_df,group_var="Group",group1="T2D",group2="ND",ssmd_thresh=-0.2,log2fc_thresh=1,top_labels=10)# Print the plotdfp

# Print the table data used for plottingprint(dfp$data,n=25)#> # A tibble: 25 × 11#>    cytokine         mean_ND mean_PreT2D   mean_T2D variance_ND variance_PreT2D#>    <chr>              <dbl>       <dbl>      <dbl>       <dbl>           <dbl>#>  1 CCL.20.MIP.3A   634.        404.       887.        6.72e+ 5         2.74e+5#>  2 GM.CSF            2.65        3.11       1.92      2.63e+ 1         3.14e+1#>  3 IFN.G         57730.      18303.     61484.        2.86e+10         2.30e+9#>  4 IL.10           979.        836.      1366.        1.99e+ 6         1.19e+6#>  5 IL.12.P70        13.0        39.1       78.9       4.15e+ 2         2.56e+4#>  6 IL.13          1064.       1543.      1122.        5.60e+ 6         1.11e+7#>  7 IL.15             7.92        4.29       8.22      3.54e+ 1         2.58e+1#>  8 IL.17A          352.        653.       615.        9.40e+ 5         2.88e+6#>  9 IL.17E.IL.25      0.0101      0.0163     0.01      1.01e- 6         3.88e-3#> 10 IL.17F            1.63        2.35       3.11      1.56e+ 1         3.37e+1#> 11 IL.1B          2806.       2977.      4299.        6.63e+ 7         3.76e+7#> 12 IL.2           9227.      10718.     16129.        2.60e+ 8         4.10e+8#> 13 IL.21           205.        210.       316.        3.15e+ 5         2.49e+5#> 14 IL.22             0.0513      0.0684     0.0633    4.58e- 3         4.51e-3#> 15 IL.23             0.147       0.243      0.269     3.13e- 2         9.37e-2#> 16 IL.27             0.0662      0.0834     0.106     6.18e- 3         5.66e-3#> 17 IL.28A            0.0537      0.0710     0.0666    2.45e- 3         5.10e-3#> 18 IL.31             0.0409      0.0905     0.0354    6.62e- 3         4.88e-2#> 19 IL.33             1.17        1.43       1.16      2.09e+ 0         2.71e+0#> 20 IL.4              0.344       0.707      0.297     4.24e- 1         2.96e+0#> 21 IL.5            134.        340.       155.        1.09e+ 5         9.88e+5#> 22 IL.6           4620.       5197.      8925.        2.86e+ 7         5.72e+7#> 23 IL.9            203.        256.       254.        1.34e+ 5         2.11e+5#> 24 TNF.A          5046.       3069.      5624.        7.02e+ 7         1.63e+7#> 25 TNF.B             0.641       0.709      0.610     2.37e+ 0         2.76e+0#> # ℹ 5 more variables: variance_T2D <dbl>, ssmd <dbl>, log2FC <dbl>,#> #   SSMD_Category <chr>, Significant <lgl>

8. Machine Learning Models

Using XGBoost for classification

# Using XGBoost for classificationdata_df0<-ExampleData1data_df<-data.frame(data_df0[,1:3], log2(data_df0[,-c(1:3)]))data_df<-data_df[,-c(2:3)]data_df<-dplyr::filter(data_df,Group!="ND")cyt_xgb(data=data_df,group_col="Group",nrounds=500,max_depth=4,min_split_loss=0,learning_rate=0.05,nfold=5,cv=TRUE,objective="multi:softprob",eval_metric="auc",early_stopping_rounds=NULL,top_n_features=10,verbose=0,plot_roc=TRUE,print_results=FALSE)

Using Random Forest for classification

# Using Random Forest for classificationcyt_rf(data=data_df,group_col="Group",k_folds=5,ntree=1000,mtry=4,run_rfcv=TRUE,plot_roc=TRUE,verbose=FALSE)

About

R Package for Comprehensive Cytokine Data Analysis

Resources

License

Code of conduct

Stars

Watchers

Forks

Languages


[8]ページ先頭

©2009-2025 Movatter.jp