- Notifications
You must be signed in to change notification settings - Fork43
Masked Diffusion Transformer is the SOTA for image synthesis. (ICCV 2023)
License
sail-sg/MDT
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
The official codebase forMasked Diffusion Transformer is a Strong Image Synthesizer.
MDTv2 achieves superior image synthesis performance, e.g., a new SOTA FID score of 1.58 on the ImageNet dataset, and has more than 10× faster learning speed than the previous SOTA DiT.
MDTv2 demonstrates a 5x acceleration compared to the original MDT.
Despite its success in image synthesis, we observe that diffusion probabilistic models (DPMs) often lack contextual reasoning ability to learn the relations among object parts in an image, leading to a slow learning process. To solve this issue, we propose a Masked Diffusion Transformer (MDT) that introduces a mask latent modeling scheme to explicitly enhance the DPMs’ ability to contextual relation learning among object semantic parts in an image.
During training, MDT operates in the latent space to mask certain tokens. Then, an asymmetric diffusion transformer is designed to predict masked tokens from unmasked ones while maintaining the diffusion generation process. Our MDT can reconstruct the full information of an image from its incomplete contextual input, thus enabling it to learn the associated relations among image tokens. We further improve MDT with a more efficient macro network structure and training strategy, named MDTv2.
Experimental results show that MDTv2 achieves superior image synthesis performance, e.g.,a new SOTA FID score of 1.58 on the ImageNet dataset, and has more than 10× faster learning speed than the previous SOTA DiT.
| Model | Dataset | Resolution | FID-50K | Inception Score |
|---|---|---|---|---|
| MDT-XL/2 | ImageNet | 256x256 | 1.79 | 283.01 |
| MDTv2-XL/2 | ImageNet | 256x256 | 1.58 | 314.73 |
Model is hosted on hugglingface, you can also download it with:
from huggingface_hub import snapshot_downloadmodels_path = snapshot_download("shgao/MDT-XL2")ckpt_model_path = os.path.join(models_path, "mdt_xl2_v1_ckpt.pt")A hugglingface demo is onDEMO.
NEW SOTA on FID.
Prepare the Pytorch >=2.0 version. Download and install this repo.
git clone https://github.com/sail-sg/MDTcd MDTpip install -e .InstallAdan optimizer, Adan is a strong optimizer with faster convergence speed than AdamW.(paper)
python -m pip install git+https://github.com/sail-sg/Adan.gitDATA
- For standard datasets like ImageNet and CIFAR, please refer to 'dataset' for preparation.
- When using customized dataset, change the image file name to
ClassID_ImgID.jpg,as theADM's dataloder gets the class ID from the file name.
Training on one node (`run.sh`).
export OPENAI_LOGDIR=output_mdtv2_s2NUM_GPUS=8MODEL_FLAGS="--image_size 256 --mask_ratio 0.30 --decode_layer 6 --model MDTv2_S_2"DIFFUSION_FLAGS="--diffusion_steps 1000"TRAIN_FLAGS="--batch_size 32"DATA_PATH=/dataset/imagenetpython -m torch.distributed.launch --nproc_per_node=$NUM_GPUS scripts/image_train.py --data_dir$DATA_PATH$MODEL_FLAGS$DIFFUSION_FLAGS$TRAIN_FLAGS
Training on multiple nodes (`run_ddp_master.sh` and `run_ddp_worker.sh`).
# On master:export OPENAI_LOGDIR=output_mdtv2_xl2MODEL_FLAGS="--image_size 256 --mask_ratio 0.30 --decode_layer 4 --model MDTv2_XL_2"DIFFUSION_FLAGS="--diffusion_steps 1000"TRAIN_FLAGS="--batch_size 4"DATA_PATH=/dataset/imagenetNUM_NODE=8GPU_PRE_NODE=8python -m torch.distributed.launch --master_addr=$(hostname) --nnodes=$NUM_NODE --node_rank=$RANK --nproc_per_node=$GPU_PRE_NODE --master_port=$MASTER_PORT scripts/image_train.py --data_dir$DATA_PATH$MODEL_FLAGS$DIFFUSION_FLAGS$TRAIN_FLAGS# On workers:export OPENAI_LOGDIR=output_mdtv2_xl2MODEL_FLAGS="--image_size 256 --mask_ratio 0.30 --decode_layer 4 --model MDTv2_XL_2"DIFFUSION_FLAGS="--diffusion_steps 1000"TRAIN_FLAGS="--batch_size 4"DATA_PATH=/dataset/imagenetNUM_NODE=8GPU_PRE_NODE=8python -m torch.distributed.launch --master_addr=$MASTER_ADDR --nnodes=$NUM_NODE --node_rank=$RANK --nproc_per_node=$GPU_PRE_NODE --master_port=$MASTER_PORT scripts/image_train.py --data_dir$DATA_PATH$MODEL_FLAGS$DIFFUSION_FLAGS$TRAIN_FLAGS
The evaluation code is obtained fromADM's TensorFlow evaluation suite.Please follow the instructions in theevaluations folder to set up the evaluation environment.
Sampling and Evaluation (`run_sample.sh`):
MODEL_PATH=output_mdtv2_xl2/mdt_xl2_v2_ckpt.ptexport OPENAI_LOGDIR=output_mdtv2_xl2_evalNUM_GPUS=8echo'CFG Class-conditional sampling:'MODEL_FLAGS="--image_size 256 --model MDTv2_XL_2 --decode_layer 4"DIFFUSION_FLAGS="--num_sampling_steps 250 --num_samples 50000 --cfg_cond True"echo$MODEL_FLAGSecho$DIFFUSION_FLAGSecho$MODEL_PATHpython -m torch.distributed.launch --nproc_per_node=$NUM_GPUS scripts/image_sample.py --model_path$MODEL_PATH$MODEL_FLAGS$DIFFUSION_FLAGSecho$MODEL_FLAGSecho$DIFFUSION_FLAGSecho$MODEL_PATHpython evaluations/evaluator.py ../dataeval/VIRTUAL_imagenet256_labeled.npz$OPENAI_LOGDIR/samples_50000x256x256x3.npzecho'Class-conditional sampling:'MODEL_FLAGS="--image_size 256 --model MDTv2_XL_2 --decode_layer 4"DIFFUSION_FLAGS="--num_sampling_steps 250 --num_samples 50000"echo$MODEL_FLAGSecho$DIFFUSION_FLAGSecho$MODEL_PATHpython -m torch.distributed.launch --nproc_per_node=$NUM_GPUS scripts/image_sample.py --model_path$MODEL_PATH$MODEL_FLAGS$DIFFUSION_FLAGSecho$MODEL_FLAGSecho$DIFFUSION_FLAGSecho$MODEL_PATHpython evaluations/evaluator.py ../dataeval/VIRTUAL_imagenet256_labeled.npz$OPENAI_LOGDIR/samples_50000x256x256x3.npz
Run theinfer_mdt.py to generate images.
@misc{gao2023masked, title={Masked Diffusion Transformer is a Strong Image Synthesizer}, author={Shanghua Gao and Pan Zhou and Ming-Ming Cheng and Shuicheng Yan}, year={2023}, eprint={2303.14389}, archivePrefix={arXiv}, primaryClass={cs.CV}}About
Masked Diffusion Transformer is the SOTA for image synthesis. (ICCV 2023)
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors2
Uh oh!
There was an error while loading.Please reload this page.
