|
45 | 45 |
|
46 | 46 | <py-env>
|
47 | 47 | - numpy
|
| 48 | +- paths: |
| 49 | + - /palettes.py |
| 50 | + - /fractals.py |
48 | 51 | </py-env>
|
49 | 52 |
|
50 | 53 | <py-script>
|
51 | 54 | from pyodide import to_js
|
52 | 55 |
|
53 | 56 | import numpy as np
|
54 | 57 |
|
| 58 | +from palettes import Magma256 |
| 59 | +from fractals import mandelbrot, julia |
| 60 | + |
55 | 61 | from js import (
|
56 | 62 | console,
|
57 | 63 | document,
|
|
61 | 67 | CanvasRenderingContext2D as Context2d,
|
62 | 68 | )
|
63 | 69 |
|
64 |
| -Magma256 = np.array([ |
65 |
| - [0x00, 0x00, 0x03], [0x00, 0x00, 0x04], [0x00, 0x00, 0x06], [0x01, 0x00, 0x07], [0x01, 0x01, 0x09], [0x01, 0x01, 0x0b], |
66 |
| - [0x02, 0x02, 0x0d], [0x02, 0x02, 0x0f], [0x03, 0x03, 0x11], [0x04, 0x03, 0x13], [0x04, 0x04, 0x15], [0x05, 0x04, 0x17], |
67 |
| - [0x06, 0x05, 0x19], [0x07, 0x05, 0x1b], [0x08, 0x06, 0x1d], [0x09, 0x07, 0x1f], [0x0a, 0x07, 0x22], [0x0b, 0x08, 0x24], |
68 |
| - [0x0c, 0x09, 0x26], [0x0d, 0x0a, 0x28], [0x0e, 0x0a, 0x2a], [0x0f, 0x0b, 0x2c], [0x10, 0x0c, 0x2f], [0x11, 0x0c, 0x31], |
69 |
| - [0x12, 0x0d, 0x33], [0x14, 0x0d, 0x35], [0x15, 0x0e, 0x38], [0x16, 0x0e, 0x3a], [0x17, 0x0f, 0x3c], [0x18, 0x0f, 0x3f], |
70 |
| - [0x1a, 0x10, 0x41], [0x1b, 0x10, 0x44], [0x1c, 0x10, 0x46], [0x1e, 0x10, 0x49], [0x1f, 0x11, 0x4b], [0x20, 0x11, 0x4d], |
71 |
| - [0x22, 0x11, 0x50], [0x23, 0x11, 0x52], [0x25, 0x11, 0x55], [0x26, 0x11, 0x57], [0x28, 0x11, 0x59], [0x2a, 0x11, 0x5c], |
72 |
| - [0x2b, 0x11, 0x5e], [0x2d, 0x10, 0x60], [0x2f, 0x10, 0x62], [0x30, 0x10, 0x65], [0x32, 0x10, 0x67], [0x34, 0x10, 0x68], |
73 |
| - [0x35, 0x0f, 0x6a], [0x37, 0x0f, 0x6c], [0x39, 0x0f, 0x6e], [0x3b, 0x0f, 0x6f], [0x3c, 0x0f, 0x71], [0x3e, 0x0f, 0x72], |
74 |
| - [0x40, 0x0f, 0x73], [0x42, 0x0f, 0x74], [0x43, 0x0f, 0x75], [0x45, 0x0f, 0x76], [0x47, 0x0f, 0x77], [0x48, 0x10, 0x78], |
75 |
| - [0x4a, 0x10, 0x79], [0x4b, 0x10, 0x79], [0x4d, 0x11, 0x7a], [0x4f, 0x11, 0x7b], [0x50, 0x12, 0x7b], [0x52, 0x12, 0x7c], |
76 |
| - [0x53, 0x13, 0x7c], [0x55, 0x13, 0x7d], [0x57, 0x14, 0x7d], [0x58, 0x15, 0x7e], [0x5a, 0x15, 0x7e], [0x5b, 0x16, 0x7e], |
77 |
| - [0x5d, 0x17, 0x7e], [0x5e, 0x17, 0x7f], [0x60, 0x18, 0x7f], [0x61, 0x18, 0x7f], [0x63, 0x19, 0x7f], [0x65, 0x1a, 0x80], |
78 |
| - [0x66, 0x1a, 0x80], [0x68, 0x1b, 0x80], [0x69, 0x1c, 0x80], [0x6b, 0x1c, 0x80], [0x6c, 0x1d, 0x80], [0x6e, 0x1e, 0x81], |
79 |
| - [0x6f, 0x1e, 0x81], [0x71, 0x1f, 0x81], [0x73, 0x1f, 0x81], [0x74, 0x20, 0x81], [0x76, 0x21, 0x81], [0x77, 0x21, 0x81], |
80 |
| - [0x79, 0x22, 0x81], [0x7a, 0x22, 0x81], [0x7c, 0x23, 0x81], [0x7e, 0x24, 0x81], [0x7f, 0x24, 0x81], [0x81, 0x25, 0x81], |
81 |
| - [0x82, 0x25, 0x81], [0x84, 0x26, 0x81], [0x85, 0x26, 0x81], [0x87, 0x27, 0x81], [0x89, 0x28, 0x81], [0x8a, 0x28, 0x81], |
82 |
| - [0x8c, 0x29, 0x80], [0x8d, 0x29, 0x80], [0x8f, 0x2a, 0x80], [0x91, 0x2a, 0x80], [0x92, 0x2b, 0x80], [0x94, 0x2b, 0x80], |
83 |
| - [0x95, 0x2c, 0x80], [0x97, 0x2c, 0x7f], [0x99, 0x2d, 0x7f], [0x9a, 0x2d, 0x7f], [0x9c, 0x2e, 0x7f], [0x9e, 0x2e, 0x7e], |
84 |
| - [0x9f, 0x2f, 0x7e], [0xa1, 0x2f, 0x7e], [0xa3, 0x30, 0x7e], [0xa4, 0x30, 0x7d], [0xa6, 0x31, 0x7d], [0xa7, 0x31, 0x7d], |
85 |
| - [0xa9, 0x32, 0x7c], [0xab, 0x33, 0x7c], [0xac, 0x33, 0x7b], [0xae, 0x34, 0x7b], [0xb0, 0x34, 0x7b], [0xb1, 0x35, 0x7a], |
86 |
| - [0xb3, 0x35, 0x7a], [0xb5, 0x36, 0x79], [0xb6, 0x36, 0x79], [0xb8, 0x37, 0x78], [0xb9, 0x37, 0x78], [0xbb, 0x38, 0x77], |
87 |
| - [0xbd, 0x39, 0x77], [0xbe, 0x39, 0x76], [0xc0, 0x3a, 0x75], [0xc2, 0x3a, 0x75], [0xc3, 0x3b, 0x74], [0xc5, 0x3c, 0x74], |
88 |
| - [0xc6, 0x3c, 0x73], [0xc8, 0x3d, 0x72], [0xca, 0x3e, 0x72], [0xcb, 0x3e, 0x71], [0xcd, 0x3f, 0x70], [0xce, 0x40, 0x70], |
89 |
| - [0xd0, 0x41, 0x6f], [0xd1, 0x42, 0x6e], [0xd3, 0x42, 0x6d], [0xd4, 0x43, 0x6d], [0xd6, 0x44, 0x6c], [0xd7, 0x45, 0x6b], |
90 |
| - [0xd9, 0x46, 0x6a], [0xda, 0x47, 0x69], [0xdc, 0x48, 0x69], [0xdd, 0x49, 0x68], [0xde, 0x4a, 0x67], [0xe0, 0x4b, 0x66], |
91 |
| - [0xe1, 0x4c, 0x66], [0xe2, 0x4d, 0x65], [0xe4, 0x4e, 0x64], [0xe5, 0x50, 0x63], [0xe6, 0x51, 0x62], [0xe7, 0x52, 0x62], |
92 |
| - [0xe8, 0x54, 0x61], [0xea, 0x55, 0x60], [0xeb, 0x56, 0x60], [0xec, 0x58, 0x5f], [0xed, 0x59, 0x5f], [0xee, 0x5b, 0x5e], |
93 |
| - [0xee, 0x5d, 0x5d], [0xef, 0x5e, 0x5d], [0xf0, 0x60, 0x5d], [0xf1, 0x61, 0x5c], [0xf2, 0x63, 0x5c], [0xf3, 0x65, 0x5c], |
94 |
| - [0xf3, 0x67, 0x5b], [0xf4, 0x68, 0x5b], [0xf5, 0x6a, 0x5b], [0xf5, 0x6c, 0x5b], [0xf6, 0x6e, 0x5b], [0xf6, 0x70, 0x5b], |
95 |
| - [0xf7, 0x71, 0x5b], [0xf7, 0x73, 0x5c], [0xf8, 0x75, 0x5c], [0xf8, 0x77, 0x5c], [0xf9, 0x79, 0x5c], [0xf9, 0x7b, 0x5d], |
96 |
| - [0xf9, 0x7d, 0x5d], [0xfa, 0x7f, 0x5e], [0xfa, 0x80, 0x5e], [0xfa, 0x82, 0x5f], [0xfb, 0x84, 0x60], [0xfb, 0x86, 0x60], |
97 |
| - [0xfb, 0x88, 0x61], [0xfb, 0x8a, 0x62], [0xfc, 0x8c, 0x63], [0xfc, 0x8e, 0x63], [0xfc, 0x90, 0x64], [0xfc, 0x92, 0x65], |
98 |
| - [0xfc, 0x93, 0x66], [0xfd, 0x95, 0x67], [0xfd, 0x97, 0x68], [0xfd, 0x99, 0x69], [0xfd, 0x9b, 0x6a], [0xfd, 0x9d, 0x6b], |
99 |
| - [0xfd, 0x9f, 0x6c], [0xfd, 0xa1, 0x6e], [0xfd, 0xa2, 0x6f], [0xfd, 0xa4, 0x70], [0xfe, 0xa6, 0x71], [0xfe, 0xa8, 0x73], |
100 |
| - [0xfe, 0xaa, 0x74], [0xfe, 0xac, 0x75], [0xfe, 0xae, 0x76], [0xfe, 0xaf, 0x78], [0xfe, 0xb1, 0x79], [0xfe, 0xb3, 0x7b], |
101 |
| - [0xfe, 0xb5, 0x7c], [0xfe, 0xb7, 0x7d], [0xfe, 0xb9, 0x7f], [0xfe, 0xbb, 0x80], [0xfe, 0xbc, 0x82], [0xfe, 0xbe, 0x83], |
102 |
| - [0xfe, 0xc0, 0x85], [0xfe, 0xc2, 0x86], [0xfe, 0xc4, 0x88], [0xfe, 0xc6, 0x89], [0xfe, 0xc7, 0x8b], [0xfe, 0xc9, 0x8d], |
103 |
| - [0xfe, 0xcb, 0x8e], [0xfd, 0xcd, 0x90], [0xfd, 0xcf, 0x92], [0xfd, 0xd1, 0x93], [0xfd, 0xd2, 0x95], [0xfd, 0xd4, 0x97], |
104 |
| - [0xfd, 0xd6, 0x98], [0xfd, 0xd8, 0x9a], [0xfd, 0xda, 0x9c], [0xfd, 0xdc, 0x9d], [0xfd, 0xdd, 0x9f], [0xfd, 0xdf, 0xa1], |
105 |
| - [0xfd, 0xe1, 0xa3], [0xfc, 0xe3, 0xa5], [0xfc, 0xe5, 0xa6], [0xfc, 0xe6, 0xa8], [0xfc, 0xe8, 0xaa], [0xfc, 0xea, 0xac], |
106 |
| - [0xfc, 0xec, 0xae], [0xfc, 0xee, 0xb0], [0xfc, 0xf0, 0xb1], [0xfc, 0xf1, 0xb3], [0xfc, 0xf3, 0xb5], [0xfc, 0xf5, 0xb7], |
107 |
| - [0xfb, 0xf7, 0xb9], [0xfb, 0xf9, 0xbb], [0xfb, 0xfa, 0xbd], [0xfb, 0xfc, 0xbf], |
108 |
| -], dtype="uint8") |
109 |
| - |
110 |
| -def mandelbrot(width: int, height: int, *, |
111 |
| - x: float = -0.5, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array: |
112 |
| - """ |
113 |
| - From https://www.learnpythonwithrune.org/numpy-compute-mandelbrot-set-by-vectorization/. |
114 |
| - """ |
115 |
| - # To make navigation easier we calculate these values |
116 |
| - x_width, y_height = 1.5, 1.5*height/width |
117 |
| - x_from, x_to = x - x_width/zoom, x + x_width/zoom |
118 |
| - y_from, y_to = y - y_height/zoom, y + y_height/zoom |
119 |
| - |
120 |
| - # Here the actual algorithm starts |
121 |
| - x = np.linspace(x_from, x_to, width).reshape((1, width)) |
122 |
| - y = np.linspace(y_from, y_to, height).reshape((height, 1)) |
123 |
| - c = x + 1j*y |
124 |
| - |
125 |
| - # Initialize z to all zero |
126 |
| - z = np.zeros(c.shape, dtype=np.complex128) |
127 |
| - |
128 |
| - # To keep track in which iteration the point diverged |
129 |
| - div_time = np.zeros(z.shape, dtype=int) |
130 |
| - |
131 |
| - # To keep track on which points did not converge so far |
132 |
| - m = np.full(c.shape, True, dtype=bool) |
133 |
| - for i in range(max_iterations): |
134 |
| - z[m] = z[m]**2 + c[m] |
135 |
| - diverged = np.greater(np.abs(z), 2, out=np.full(c.shape, False), where=m) # Find diverging |
136 |
| - div_time[diverged] = i # set the value of the diverged iteration number |
137 |
| - m[np.abs(z)> 2] = False # to remember which have diverged |
138 |
| - |
139 |
| - return div_time |
140 |
| - |
141 |
| -def julia(width: int, height: int, *, |
142 |
| - c: complex = -0.4 + 0.6j, x: float = 0, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array: |
143 |
| - """ |
144 |
| - From https://www.learnpythonwithrune.org/numpy-calculate-the-julia-set-with-vectorization/. |
145 |
| - """ |
146 |
| - # To make navigation easier we calculate these values |
147 |
| - x_width, y_height = 1.5, 1.5*height/width |
148 |
| - x_from, x_to = x - x_width/zoom, x + x_width/zoom |
149 |
| - y_from, y_to = y - y_height/zoom, y + y_height/zoom |
150 |
| - |
151 |
| - # Here the actual algorithm starts |
152 |
| - x = np.linspace(x_from, x_to, width).reshape((1, width)) |
153 |
| - y = np.linspace(y_from, y_to, height).reshape((height, 1)) |
154 |
| - z = x + 1j*y |
155 |
| - |
156 |
| - # Initialize z to all zero |
157 |
| - c = np.full(z.shape, c) |
158 |
| - |
159 |
| - # To keep track in which iteration the point diverged |
160 |
| - div_time = np.zeros(z.shape, dtype=int) |
161 |
| - |
162 |
| - # To keep track on which points did not converge so far |
163 |
| - m = np.full(c.shape, True, dtype=bool) |
164 |
| - for i in range(max_iterations): |
165 |
| - z[m] = z[m]**2 + c[m] |
166 |
| - m[np.abs(z)> 2] = False |
167 |
| - div_time[m] = i |
168 |
| - |
169 |
| - return div_time |
170 |
| - |
171 | 70 | def create_canvas(width: int, height: int, target: str) -> Context2d:
|
172 | 71 | pixel_ratio = devicePixelRatio
|
173 | 72 |
|
|