- Notifications
You must be signed in to change notification settings - Fork49
Implementation of "Deep Graph Matching Consensus" in PyTorch
License
rusty1s/deep-graph-matching-consensus
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
This is a PyTorch implementation ofDeep Graph Matching Consensus, as described in our paper:
Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, Nils M. Kriege:Deep Graph Matching Consensus(ICLR 2020)
- PyTorch (>=1.2.0)
- PyTorch Geometric (>=1.5.0)
- KeOps (>=1.1.0)
$ python setup.py installHead over to ourdocumentation for a detailed overview of theDGMC module.
We provide training and evaluation procedures for thePascalVOC with Berkely annotations dataset, theWILLOW-ObjectClass dataset, thePascalPF dataset, and theDBP15K dataset.Experiments can be run via:
$ cd examples/$ python pascal.py$ python willow.py$ python pascal_pf.py$ python dbp15k.py --category=zh_enPlease citeour paper if you use this code in your own work:
@inproceedings{Fey/etal/2020, title={Deep Graph Matching Consensus}, author={Fey, M. and Lenssen, J. E. and Morris, C. and Masci, J. and Kriege, N. M.}, booktitle={International Conference on Learning Representations (ICLR)}, year={2020},}$ python setup.py testAbout
Implementation of "Deep Graph Matching Consensus" in PyTorch
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.




