- Notifications
You must be signed in to change notification settings - Fork1.8k
Minimal and clean examples of machine learning algorithms implementations
License
rushter/MLAlgorithms
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
A collection of minimal and clean implementations of machine learning algorithms.
This project is targeting people who want to learn internals of ml algorithms or implement them from scratch.
The code is much easier to follow than the optimized libraries and easier to play with.
All algorithms are implemented in Python, using numpy, scipy and autograd.
- Deep learning (MLP, CNN, RNN, LSTM)
- Linear regression, logistic regression
- Random Forests
- Support vector machine (SVM) with kernels (Linear, Poly, RBF)
- K-Means
- Gaussian Mixture Model
- K-nearest neighbors
- Naive bayes
- Principal component analysis (PCA)
- Factorization machines
- Restricted Boltzmann machine (RBM)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Gradient Boosting trees (also known as GBDT, GBRT, GBM, XGBoost)
- Reinforcement learning (Deep Q learning)
git clone https://github.com/rushter/MLAlgorithmscd MLAlgorithms pip install scipy numpy python setup.py developcd MLAlgorithms python -m examples.linear_modelscd MLAlgorithms docker build -t mlalgorithms. docker run --rm -it mlalgorithms bash python -m examples.linear_models
Your contributions are always welcome!
Feel free to improve existing code, documentation or implement new algorithm.
Please open an issue to propose your changes if they are big enough.
About
Minimal and clean examples of machine learning algorithms implementations
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Releases
Packages0
Uh oh!
There was an error while loading.Please reload this page.