Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commit6a0d5bb

Browse files
committed
add creating plots in plotly tutorial
1 parentbaa43ea commit6a0d5bb

File tree

6 files changed

+560
-0
lines changed

6 files changed

+560
-0
lines changed

‎README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -55,6 +55,7 @@ This is a repository of all the tutorials of [The Python Code](https://www.thepy
5555
-[How to Perform Voice Gender Recognition using TensorFlow in Python](https://www.thepythoncode.com/article/gender-recognition-by-voice-using-tensorflow-in-python). ([code](https://github.com/x4nth055/gender-recognition-by-voice))
5656
-[Introduction to Finance and Technical Indicators with Python](https://www.thepythoncode.com/article/introduction-to-finance-and-technical-indicators-with-python). ([code](machine-learning/technical-indicators))
5757
-[Algorithmic Trading with FXCM Broker in Python](https://www.thepythoncode.com/article/trading-with-fxcm-broker-using-fxcmpy-library-in-python). ([code](machine-learning/trading-with-fxcm))
58+
-[How to Create Plots With Plotly In Python](https://www.thepythoncode.com/article/creating-dynamic-plots-with-plotly-visualization-tool-in-python). ([code](machine-learning/plotly-visualization))
5859

5960
-###[General Python Topics](https://www.thepythoncode.com/topic/general-python-topics)
6061
-[How to Make Facebook Messenger bot in Python](https://www.thepythoncode.com/article/make-bot-fbchat-python). ([code](general/messenger-bot))
Lines changed: 237 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,237 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type":"code",
5+
"execution_count":null,
6+
"metadata": {},
7+
"outputs": [],
8+
"source": [
9+
"import plotly.offline as py\n",
10+
"import plotly.graph_objs as go\n",
11+
"import plotly.figure_factory as ff\n",
12+
"import pandas as pd\n",
13+
"import numpy as np\n",
14+
"import yfinance as yf\n",
15+
"import pandas_datareader as pdr\n",
16+
"\n",
17+
"py.init_notebook_mode()"
18+
]
19+
},
20+
{
21+
"cell_type":"code",
22+
"execution_count":null,
23+
"metadata": {},
24+
"outputs": [],
25+
"source": [
26+
"x = [ i for i in range(-10,10) ]\n",
27+
"\n",
28+
"y = [ i*2 for i in range(-10,10) ]\n",
29+
"\n",
30+
"xaxis = go.layout.XAxis(title=\"X Axis\")\n",
31+
"yaxis = go.layout.YAxis(title=\"Y Axis\")\n",
32+
"\n",
33+
"fig = go.Figure(layout=go.Layout(title=\"Simple Line Plot\", xaxis=xaxis, yaxis=yaxis))\n",
34+
"fig.add_trace(go.Scatter(x=x, y=y))"
35+
]
36+
},
37+
{
38+
"cell_type":"code",
39+
"execution_count":null,
40+
"metadata": {},
41+
"outputs": [],
42+
"source": [
43+
"def sigmoid(x):\n",
44+
" return 1 / (1 + np.exp((-1) * x))\n",
45+
"\n",
46+
"x = sorted(np.random.random(100) * 10 - 5)\n",
47+
"y = [ sigmoid(i) for i in x ]\n",
48+
"\n",
49+
"xaxis = go.layout.XAxis(title=\"X Axis\")\n",
50+
"yaxis = go.layout.YAxis(title=\"Y Axis\")\n",
51+
"\n",
52+
"fig=go.Figure(layout=go.Layout(title=\"Sigmoid Plot\",xaxis=xaxis, yaxis=yaxis))\n",
53+
"fig.add_trace(go.Scatter(x=x, y=y, marker=dict(color=\"red\")))"
54+
]
55+
},
56+
{
57+
"cell_type":"code",
58+
"execution_count":null,
59+
"metadata": {},
60+
"outputs": [],
61+
"source": [
62+
"l = []\n",
63+
"\n",
64+
"for _ in range(5):\n",
65+
" l.append([ sorted(np.random.randint(low=0, high=10000, size=50)), sorted(np.random.randint(low=0, high=10000, size=50)) ])\n",
66+
"\n",
67+
"l = np.array(l)\n",
68+
"\n",
69+
"figure = go.Figure(layout=go.Layout(title=\"Simple Scatter Example\", xaxis=go.layout.XAxis(title=\"X\"), yaxis=go.layout.YAxis(title=\"Y\")))\n",
70+
"for i in range(len(l)):\n",
71+
" figure.add_trace(go.Scatter(x=l[i][0],y=l[i][1], mode=\"markers\", name=f\" Distribution {i+1}\"))\n",
72+
"figure.show()"
73+
]
74+
},
75+
{
76+
"cell_type":"code",
77+
"execution_count":null,
78+
"metadata": {},
79+
"outputs": [],
80+
"source": [
81+
"dist = np.random.normal(loc=0, scale=1, size=50000)"
82+
]
83+
},
84+
{
85+
"cell_type":"code",
86+
"execution_count":null,
87+
"metadata": {},
88+
"outputs": [],
89+
"source": [
90+
"figure = go.Figure()\n",
91+
"figure.add_trace(go.Histogram(x=dist,))"
92+
]
93+
},
94+
{
95+
"cell_type":"code",
96+
"execution_count":null,
97+
"metadata": {},
98+
"outputs": [],
99+
"source": [
100+
"\n",
101+
"\n",
102+
"d=[{\"values\":np.random.normal(0,0.5,10000),\"information\":\" Normal Distribution with mean 0 and std= 0.5\"},\n",
103+
" {\"values\":np.random.normal(0,1,10000),\"information\":\" Normal Distribution with mean 0 and std= 1\"},\n",
104+
" {\"values\":np.random.normal(0,1.5,10000),\"information\":\" Normal Distribution with mean 0 and std= 1.5\"},\n",
105+
" {\"values\":np.random.normal(0,2,10000),\"information\":\" Normal Distribution with mean 0 and std= 2\"},\n",
106+
" {\"values\":np.random.normal(0,5,10000),\"information\":\" Normal Distribution with mean 0 and std= 5\"}]\n",
107+
"\n",
108+
"ff.create_distplot([ele[\"values\"] for ele in d], group_labels=[ele[\"information\"] for ele in d], show_hist=False)"
109+
]
110+
},
111+
{
112+
"cell_type":"code",
113+
"execution_count":null,
114+
"metadata": {},
115+
"outputs": [],
116+
"source": [
117+
"x = np.random.randint(low=5, high=100, size=15)\n",
118+
"y = np.random.randint(low=5, high=100 ,size=15)\n",
119+
"z = np.random.randint(low=5, high=100, size=15)\n",
120+
"\n",
121+
"fig = go.Figure()\n",
122+
"fig.add_trace(go.Scatter3d(x=x, y=y, z=z, mode=\"markers\"))"
123+
]
124+
},
125+
{
126+
"cell_type":"code",
127+
"execution_count":null,
128+
"metadata": {},
129+
"outputs": [],
130+
"source": [
131+
"df_iris = pd.read_csv(\"iris.csv\")"
132+
]
133+
},
134+
{
135+
"cell_type":"code",
136+
"execution_count":null,
137+
"metadata": {},
138+
"outputs": [],
139+
"source": [
140+
"fig = go.Figure()\n",
141+
"species_types = df_iris.species.unique().tolist()\n",
142+
"\n",
143+
"for specie in species_types:\n",
144+
" b = df_iris.species == specie\n",
145+
" fig.add_trace(go.Scatter3d(x=df_iris[\"sepal_length\"][b], y=df_iris[\"sepal_width\"][b], z=df_iris[\"petal_width\"][b], name=specie, mode=\"markers\"))\n",
146+
"\n",
147+
"\n",
148+
"fig.show()"
149+
]
150+
},
151+
{
152+
"cell_type":"code",
153+
"execution_count":null,
154+
"metadata": {},
155+
"outputs": [],
156+
"source": [
157+
"yf.pdr_override()\n",
158+
"\n",
159+
"symbols = [\"AAPL\",\"MSFT\"]\n",
160+
"stocks = []\n",
161+
"for symbol in symbols:\n",
162+
" stocks.append(pdr.get_data_yahoo(symbol, start=\"2020-01-01\", end=\"2020-05-31\"))"
163+
]
164+
},
165+
{
166+
"cell_type":"code",
167+
"execution_count":null,
168+
"metadata": {},
169+
"outputs": [],
170+
"source": [
171+
"fig = go.Figure()\n",
172+
"\n",
173+
"for stock,symbol in zip(stocks,symbols):\n",
174+
" fig.add_trace(go.Scatter(x=stock.index, y=stock.Close, name=symbol))\n",
175+
"\n",
176+
"fig.show()"
177+
]
178+
},
179+
{
180+
"cell_type":"code",
181+
"execution_count":null,
182+
"metadata": {},
183+
"outputs": [],
184+
"source": [
185+
"df_aapl = pdr.get_data_yahoo(symbol, start=\"2020-01-01\", end=\"2020-05-31\")"
186+
]
187+
},
188+
{
189+
"cell_type":"code",
190+
"execution_count":null,
191+
"metadata": {
192+
"scrolled":true
193+
},
194+
"outputs": [],
195+
"source": [
196+
"ff.create_candlestick(dates=df_aapl.index, open=df_aapl.Open, high=df_aapl.High, low=df_aapl.Low, close=df_aapl.Close)"
197+
]
198+
},
199+
{
200+
"cell_type":"code",
201+
"execution_count":null,
202+
"metadata": {},
203+
"outputs": [],
204+
"source": [
205+
"\n"
206+
]
207+
},
208+
{
209+
"cell_type":"code",
210+
"execution_count":null,
211+
"metadata": {},
212+
"outputs": [],
213+
"source": []
214+
}
215+
],
216+
"metadata": {
217+
"kernelspec": {
218+
"display_name":"Python 3",
219+
"language":"python",
220+
"name":"python3"
221+
},
222+
"language_info": {
223+
"codemirror_mode": {
224+
"name":"ipython",
225+
"version":3
226+
},
227+
"file_extension":".py",
228+
"mimetype":"text/x-python",
229+
"name":"python",
230+
"nbconvert_exporter":"python",
231+
"pygments_lexer":"ipython3",
232+
"version":"3.6.6"
233+
}
234+
},
235+
"nbformat":4,
236+
"nbformat_minor":4
237+
}
Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
#[How to Create Plots With Plotly In Python](https://www.thepythoncode.com/article/creating-dynamic-plots-with-plotly-visualization-tool-in-python)
2+
To run this on a jupyter lab:
3+
- Install Jupyter Lab
4+
- Install plotly extension:
5+
```bash
6+
$ jupyter labextension install jupyterlab-plotly
7+
```
8+
-`pip3 install -r requirements.txt`

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp