- Notifications
You must be signed in to change notification settings - Fork1
Code for "A density-driven method for the placement of biological cells over two-dimensional manifolds"
License
rougier/density-driven
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
A density-driven method for the placement of biological cells over two-dimensional manifolds
Copyright 2017 Nicolas P. Rougier, BSD License.
We introduce a graphical method originating from the computer graphics domainthat is used for the arbitrary placement of cells over a two-dimensionalmanifold. Using a bitmap image whose luminance provides cell density, thismethod guarantees a discrete distribution of cell position re- specting thelocal density. is method scales to any number of cells, allows to specifyarbitrary shapes and provides a scalable and versatile alternative to the moreclassical assumption of a non- uniform spatial distribution. e method isillustrated on a discrete homogeneous neural eld, on the distribution of conesand rods in the retina and on the neural density on a a ened piece of cortex.
Please go tohttps://github.com/ReScience-Archives/Rougier-2017
Before runningfigure-2.py, you'll need to run thestippler.py script on thegradient-1024x256.png image as follows:
$ ./stippler.py --n_iter 25 --n_point 1000 --channel red data/gradient-1024x256.png$ mv data/gradient-1024x256-stipple-1000.npy output$$ ./stippler.py --n_iter 25 --n_point 2500 --channel red data/gradient-1024x256.png$ mv data/gradient-1024x256-stipple-2500.npy output$$ ./stippler.py --n_iter 25 --n_point 5000 --channel red data/gradient-1024x256.png$ mv data/gradient-1024x256-stipple-5000.npy output$$ ./stippler.py --n_iter 25 --n_point 10000 --channel red data/gradient-1024x256.png$ mv data/gradient-1024x256-stipple-10000.npy output
Run the scriptfigure-3.py.
Run the scriptfigure-5.py.
Run the scriptfigure-6.py.
Run the scriptfigure-7.py.
Run scriptsfigure-8A.py,figure-8B.py andfigure-8C.py.
Run the scriptfigure-9AC.py, then run:
$ ./stippler.py --n_iter 25 --n_point 25000 --channel red output/galago-patch.png$ ./stippler.py --n_iter 25 --n_point 25000 --channel red output/galago-inter.png
Then run the scriptfigure-9BD.py.
About
Code for "A density-driven method for the placement of biological cells over two-dimensional manifolds"