Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up

Characterize A-to-I RNA editing in bulk and single-cell RNA sequencing experiments

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
NotificationsYou must be signed in to change notification settings

rnabioco/raer

Repository files navigation

R-CMD-check-biocCodecov test coverageplatformsbioc

raer facilitates analysis of RNA adenosine editing in theBioconductor ecosystem.

Installation

raer is available onBioconductor:

if (!require("BiocManager",quietly=TRUE)) {    install.packages("BiocManager")}BiocManager::install("raer")

You can install the development version of raer fromGitHub with:

BiocManager::install("rnabioco/raer")

Quick start

raer workflow overview

raer workflow overview

raer provides methods to compute per site read count summaries from BAMalignment files, either for known editing sites, or for all detectedsites.

library(raer)bam1fn<- raer_example("SRR5564269_Aligned.sortedByCoord.out.md.bam")bam2fn<- raer_example("SRR5564277_Aligned.sortedByCoord.out.md.bam")fafn<- raer_example("human.fasta")bams<- c("ko"=bam1fn,"wt"=bam2fn)rse<- pileup_sites(bams,fafn)

To facilitate comparisons across groups, base count data and genomiccoordinates are stored in aRangedSummarizedExperiment.

suppressMessages(library(SummarizedExperiment))rse#> class: RangedSummarizedExperiment#> dim: 1695 2#> metadata(0):#> assays(7): ALT nRef ... nC nG#> rownames(1695): site_SSR3_1_2 site_SSR3_2_2 ... site_DHFR_517_2#>   site_DHFR_518_2#> rowData names(4): REF rpbz vdb sor#> colnames(2): ko wt#> colData names(1): sampleassays(rse)#> List of length 7#> names(7): ALT nRef nAlt nA nT nC nGcolData(rse)#> DataFrame with 2 rows and 1 column#>         sample#>    <character>#> ko          ko#> wt          wt
assays(rse)$nRef[1:4, ]#>               ko wt#> site_SSR3_1_2 13 12#> site_SSR3_2_2 14 12#> site_SSR3_3_2 14 12#> site_SSR3_4_2 15 12assays(rse)$nAlt[1:4, ]#>               ko wt#> site_SSR3_1_2  0  0#> site_SSR3_2_2  0  0#> site_SSR3_3_2  0  0#> site_SSR3_4_2  0  0

TheFilterParam() class holds multiple options for customizing theoutput ofpileup_sites().

fp<- FilterParam(only_keep_variants=TRUE,library_type="fr-first-strand",min_depth=2)rse<- pileup_sites(bams,fafn,param=fp)rse#> class: RangedSummarizedExperiment#> dim: 74 2#> metadata(0):#> assays(7): ALT nRef ... nC nG#> rownames(74): site_SSR3_102_2 site_SSR3_125_2 ... site_DHFR_430_2#>   site_DHFR_513_2#> rowData names(4): REF rpbz vdb sor#> colnames(2): ko wt#> colData names(1): sample

pileup_cells() provides support for quantifying editing sites insingle cell libraries.

scbam_fn<- raer_example("5k_neuron_mouse_possort.bam")outdir<- tempdir()editing_sites<- GRanges(    c("2:579:-","2:625:-","2:589:-"    ),REF="A",ALT="G")cbs<- c("CACCAAACAACAACAA-1","TATTCCACACCCTCTA-1","GACCTTCAGTTGTAAG-1")sce<- pileup_cells(scbam_fn,sites=editing_sites,cell_barcodes=cbs,param=fp,output_directory=outdir)sce#> class: SingleCellExperiment#> dim: 3 3#> metadata(0):#> assays(2): nRef nAlt#> rownames(3): site_2_579_2_AG site_2_625_2_AG site_2_589_2_AG#> rowData names(2): REF ALT#> colnames(3): CACCAAACAACAACAA-1 TATTCCACACCCTCTA-1 GACCTTCAGTTGTAAG-1#> colData names(0):#> reducedDimNames(0):#> mainExpName: NULL#> altExpNames(0):
assays(sce)$nRef#> 3 x 3 sparse Matrix of class "dgCMatrix"#>                 CACCAAACAACAACAA-1 TATTCCACACCCTCTA-1 GACCTTCAGTTGTAAG-1#> site_2_579_2_AG                  0                  0                  1#> site_2_625_2_AG                  0                  0                  0#> site_2_589_2_AG                  1                  1                  2assays(sce)$nAlt#> 3 x 3 sparse Matrix of class "dgCMatrix"#>                 CACCAAACAACAACAA-1 TATTCCACACCCTCTA-1 GACCTTCAGTTGTAAG-1#> site_2_579_2_AG                  1                  1                  1#> site_2_625_2_AG                  1                  1                  1#> site_2_589_2_AG                  0                  0                  0

Related work

Core routines inraer are implemented using thehtslib library andmethods fromsamtools andbcftools.raer builds off of approachesfrom other RNA editing detection tools:


[8]ページ先頭

©2009-2025 Movatter.jp