- Notifications
You must be signed in to change notification settings - Fork15
Infer cell types in scRNA-seq data using bulk RNA-seq or gene sets
License
rnabioco/clustifyr
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
clustifyr classifies cells and clusters in single-cell RNA sequencingexperiments using reference bulk RNA-seq data sets, sorted microarrayexpression data, single-cell gene signatures, or lists of marker genes.
Install the Bioconductor version with:
if (!requireNamespace("BiocManager",quietly=TRUE)) install.packages("BiocManager")BiocManager::install("clustifyr")
Install the development version with:
BiocManager::install("rnabioco/clustifyr")
In this example we use the following built-in input data:
- an expression matrix of single cell RNA-seq data (
pbmc_matrix_small
) - a metadata data.frame (
pbmc_meta
), with cluster information stored("classified"
) - a vector of variable genes (
pbmc_vargenes
) - a matrix of mean normalized scRNA-seq UMI counts by cell type(
cbmc_ref
)
We then calculate correlation coefficients and plot them on apre-calculated projection (stored inpbmc_meta
).
library(clustifyr)# calculate correlationres<- clustify(input=pbmc_matrix_small,metadata=pbmc_meta$classified,ref_mat=cbmc_ref,query_genes=pbmc_vargenes)# print assignmentscor_to_call(res)#> # A tibble: 9 × 3#> # Groups: cluster [9]#> cluster type r#> <chr> <chr> <dbl>#> 1 B B 0.909#> 2 CD14+ Mono CD14+ Mono 0.915#> 3 FCGR3A+ Mono CD16+ Mono 0.929#> 4 Memory CD4 T CD4 T 0.861#> 5 Naive CD4 T CD4 T 0.889#> 6 DC DC 0.849#> 7 Platelet Mk 0.732#> 8 CD8 T NK 0.826#> 9 NK NK 0.894
# plot assignments on a projectionplot_best_call(cor_mat=res,metadata=pbmc_meta,cluster_col="classified")
clustify()
can take a clusteredSingleCellExperiment
orseurat
object (from v2 up to v5) and assign identities.
# for SingleCellExperimentsce_small<- sce_pbmc()clustify(input=sce_small,# an SCE objectref_mat=cbmc_ref,# matrix of RNA-seq expression data for each cell typecluster_col="cell_type",# name of column in meta.data containing cell clustersobj_out=TRUE# output SCE object with cell type inserted as "type" column)#> class: SingleCellExperiment#> dim: 2000 2638#> metadata(0):#> assays(2): counts logcounts#> rownames(2000): PPBP LYZ ... CLIC2 HEMGN#> rowData names(0):#> colnames(2638): AAACATACAACCAC AAACATTGAGCTAC ... TTTGCATGAGAGGC#> TTTGCATGCCTCAC#> colData names(8): cell_source sum ... type r#> reducedDimNames(1): UMAP#> mainExpName: NULL#> altExpNames(0):
# for Seuratlibrary(Seurat)s_small<- so_pbmc()clustify(input=s_small,cluster_col="RNA_snn_res.0.5",ref_mat=cbmc_ref,seurat_out=TRUE)#> An object of class Seurat#> 2000 features across 2638 samples within 1 assay#> Active assay: RNA (2000 features, 2000 variable features)#> 2 layers present: counts, data#> 1 dimensional reduction calculated: umap
# New output option, directly as a vector (in the order of the metadata), which can then be inserted into metadata dataframes and other workflowsclustify(input=s_small,cluster_col="RNA_snn_res.0.5",ref_mat=cbmc_ref,vec_out=TRUE)[1:10]#> [1] "CD4 T" "B" "CD4 T" "CD14+ Mono" "NK"#> [6] "CD4 T" "NK" "NK" "CD4 T" "CD16+ Mono"
New reference matrix can be made directly fromSingleCellExperiment
andSeurat
objects as well. Other scRNAseq experiment object types aresupported as well.
# make reference from SingleCellExperiment objectssce_small<- sce_pbmc()sce_ref<- object_ref(input=sce_small,# SCE objectcluster_col="cell_type"# name of column in colData containing cell identities)# make reference from seurat objectss_small<- so_pbmc()s_ref<- seurat_ref(seurat_object=s_small,cluster_col="RNA_snn_res.0.5")head(s_ref)#> 0 1 2 3 4 5#> PPBP 0.04883837 0.06494743 0.28763857 0.09375021 0.35662599 0.2442300#> LYZ 1.40165143 1.39466552 5.21550849 1.42699419 1.35146753 3.4034309#> S100A9 0.55679700 0.58080250 4.91453355 0.62123058 0.58823794 2.6277996#> IGLL5 0.03116080 0.04826212 0.02434753 2.44576997 0.03284986 0.2581198#> GNLY 0.46041901 0.41001072 0.53592906 0.37877736 2.53161887 0.2903092#> FTL 3.35611600 3.31062958 5.86217774 3.66698837 3.37056910 5.9518479#> 6 7 8#> PPBP 0.00000000 0.06527347 6.0941782#> LYZ 1.32701580 4.84714962 2.5303912#> S100A9 0.52098541 2.53310734 1.6775692#> IGLL5 0.05247669 0.10986617 0.2501642#> GNLY 4.70481754 0.46959958 0.3845813#> FTL 3.38471536 4.21848878 4.5508242
clustify_lists()
handles identity assignment of matrix orSingleCellExperiment
andseurat
objects based on marker gene lists.
clustify_lists(input=pbmc_matrix_small,metadata=pbmc_meta,cluster_col="classified",marker=pbmc_markers,marker_inmatrix=FALSE)#> 0 1 2 3 4 5 6#> Naive CD4 T 1.5639055 20.19469 31.77095 8.664074 23.844992 19.06931 19.06931#> Memory CD4 T 1.5639055 20.19469 31.77095 10.568007 23.844992 17.97875 19.06931#> CD14+ Mono 0.9575077 14.70716 76.21353 17.899569 11.687739 49.86699 16.83210#> B 0.6564777 12.70976 31.77095 26.422929 13.536295 20.19469 13.53630#> CD8 T 1.0785353 17.97875 31.82210 12.584823 31.822099 22.71234 40.45383#> FCGR3A+ Mono 0.6564777 13.63321 72.43684 17.899569 9.726346 56.48245 14.61025#> NK 0.6564777 14.61025 31.82210 7.757206 31.822099 22.71234 45.05072#> DC 0.6564777 15.80598 63.34978 19.069308 13.758144 40.56298 17.97875#> Platelet 0.5428889 13.34769 59.94938 14.215244 15.158755 46.92861 19.49246#> 7 8#> Naive CD4 T 6.165348 0.6055118#> Memory CD4 T 6.165348 0.9575077#> CD14+ Mono 25.181595 1.0785353#> B 17.899569 0.1401901#> CD8 T 7.882145 0.3309153#> FCGR3A+ Mono 21.409177 0.3309153#> NK 5.358651 0.3309153#> DC 45.101877 0.1401901#> Platelet 19.492465 59.9493793
clustify_lists(input=s_small,marker=pbmc_markers,marker_inmatrix=FALSE,cluster_col="RNA_snn_res.0.5",seurat_out=TRUE)#> An object of class Seurat#> 2000 features across 2638 samples within 1 assay#> Active assay: RNA (2000 features, 2000 variable features)#> 2 layers present: counts, data#> 1 dimensional reduction calculated: umap
Scriptfor benchmarking, compatible with
scRNAseq_Benchmark
Additional reference data (including tabula muris, immgen, etc) areavailable in a supplemental package
clustifyrdatahub
.Also seelistfor individual downloads.See theFAQfor more details.
About
Infer cell types in scRNA-seq data using bulk RNA-seq or gene sets
Topics
Resources
License
Code of conduct
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Contributors12
Uh oh!
There was an error while loading.Please reload this page.