- Notifications
You must be signed in to change notification settings - Fork139
[CVPR 2025] MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors
License
rmurai0610/MASt3R-SLAM
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Riku Murai* ·Eric Dexheimer* ·Andrew J. Davison
(* Equal Contribution)
conda create -n mast3r-slam python=3.11conda activate mast3r-slam
Check the system's CUDA version with nvcc
nvcc --version
Install pytorch withmatching CUDA version following:
# CUDA 11.8conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=11.8 -c pytorch -c nvidia# CUDA 12.1conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.1 -c pytorch -c nvidia# CUDA 12.4conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 pytorch-cuda=12.4 -c pytorch -c nvidia
Clone the repo and install the dependencies.
git clone https://github.com/rmurai0610/MASt3R-SLAM.git --recursivecd MASt3R-SLAM/# if you've clone the repo without --recursive run# git submodule update --init --recursivepip install -e thirdparty/mast3rpip install -e thirdparty/in3dpip install --no-build-isolation -e . # Optionally install torchcodec for faster mp4 loadingpip install torchcodec==0.1
Setup the checkpoints for MASt3R and retrieval. The license for the checkpoints and more information on the datasets used is writtenhere.
mkdir -p checkpoints/wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric.pth -P checkpoints/wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric_retrieval_trainingfree.pth -P checkpoints/wget https://download.europe.naverlabs.com/ComputerVision/MASt3R/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric_retrieval_codebook.pkl -P checkpoints/
We have primarily tested on Ubuntu. If you are using WSL, please checkout to the windows branch and follow the above installation.
git checkout windows
This disables multiprocessing which causes an issue with shared memory as discussedhere.
bash ./scripts/download_tum.shpython main.py --dataset datasets/tum/rgbd_dataset_freiburg1_room/ --config config/calib.yaml
Connect a realsense camera to the PC and run
python main.py --dataset realsense --config config/base.yaml
Our system can process either MP4 videos or folders containing RGB images.
python main.py --dataset <path/to/video>.mp4 --config config/base.yamlpython main.py --dataset <path/to/folder> --config config/base.yaml
If the calibration parameters are known, you can specify them in intrinsics.yaml
python main.py --dataset <path/to/video>.mp4 --config config/base.yaml --calib config/intrinsics.yamlpython main.py --dataset <path/to/folder> --config config/base.yaml --calib config/intrinsics.yaml
bash ./scripts/download_tum.sh
bash ./scripts/download_7_scenes.sh
bash ./scripts/download_euroc.sh
bash ./scripts/download_eth3d.sh
All evaluation script will run our system in a single-threaded, headless mode.We can run evaluations with/without calibration:
bash ./scripts/eval_tum.sh bash ./scripts/eval_tum.sh --no-calib
bash ./scripts/eval_7_scenes.sh bash ./scripts/eval_7_scenes.sh --no-calib
bash ./scripts/eval_euroc.sh bash ./scripts/eval_euroc.sh --no-calib
bash ./scripts/eval_eth3d.sh
There might be minor differences between the released version and the results in the paper after developing this multi-processing version.We run all our experiments on an RTX 4090, and the performance may differ when running with a different GPU.
We sincerely thank the developers and contributors of the many open-source projects that our code is built upon.
If you found this code/work to be useful in your own research, please considering citing the following:
@article{murai2024_mast3rslam,title={{MASt3R-SLAM}: Real-Time Dense {SLAM} with {3D} Reconstruction Priors},author={Murai, Riku and Dexheimer, Eric and Davison, Andrew J.},journal={arXiv preprint},year={2024},}