Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitff01d59

Browse files
committed
Pushing the docs for revision for branch: master, commit b444cc9c6457590b33b365185b3eafb0d312b9be
1 parente151b82 commitff01d59

File tree

900 files changed

+2647
-2577
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

900 files changed

+2647
-2577
lines changed
0 Bytes
Binary file not shown.
0 Bytes
Binary file not shown.
-237 Bytes
-237 Bytes
-13 Bytes
-86 Bytes
-255 Bytes
-255 Bytes
-204 Bytes
-361 Bytes
-68 Bytes
-6 Bytes
200 Bytes
186 Bytes
324 Bytes
46 Bytes
102 Bytes
-22 Bytes
-22 Bytes
14 Bytes
14 Bytes
-91 Bytes
-91 Bytes
50 Bytes
50 Bytes
-181 Bytes
1 Byte
-220 Bytes
-220 Bytes
132 Bytes
193 Bytes
132 Bytes
132 Bytes
17 Bytes
-1 Bytes

‎dev/_sources/auto_examples/applications/plot_model_complexity_influence.txt

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -226,53 +226,53 @@ main code
226226
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
227227
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
228228
verbose=0, warm_start=False)
229-
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.027895s
229+
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.028841s
230230

231231
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
232232
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
233233
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
234234
power_t=0.5, random_state=None, shuffle=True, verbose=0,
235235
warm_start=False)
236-
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.020745s
236+
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.020681s
237237

238238
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
239239
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
240240
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
241241
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
242242
verbose=0, warm_start=False)
243-
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.017691s
243+
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.017044s
244244

245245
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
246246
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
247247
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
248248
power_t=0.5, random_state=None, shuffle=True, verbose=0,
249249
warm_start=False)
250-
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.014569s
250+
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.015608s
251251

252252
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
253253
kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
254254
verbose=False)
255-
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000404s
255+
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000388s
256256

257257
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
258258
kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
259259
verbose=False)
260-
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000727s
260+
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000690s
261261

262262
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
263263
kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
264264
verbose=False)
265-
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001237s
265+
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001183s
266266

267267
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
268268
kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
269269
verbose=False)
270-
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001742s
270+
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001672s
271271

272272
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
273273
kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
274274
verbose=False)
275-
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.002019s
275+
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001950s
276276

277277
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
278278
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -288,7 +288,7 @@ main code
288288
min_samples_leaf=1, min_samples_split=2,
289289
min_weight_fraction_leaf=0.0, n_estimators=50, presort='auto',
290290
random_state=None, subsample=1.0, verbose=0, warm_start=False)
291-
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000201s
291+
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000206s
292292

293293
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
294294
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -297,7 +297,7 @@ main code
297297
min_weight_fraction_leaf=0.0, n_estimators=100,
298298
presort='auto', random_state=None, subsample=1.0, verbose=0,
299299
warm_start=False)
300-
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000287s
300+
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000290s
301301

302302
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
303303
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -306,7 +306,7 @@ main code
306306
min_weight_fraction_leaf=0.0, n_estimators=200,
307307
presort='auto', random_state=None, subsample=1.0, verbose=0,
308308
warm_start=False)
309-
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000453s
309+
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000454s
310310

311311
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
312312
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -315,10 +315,10 @@ main code
315315
min_weight_fraction_leaf=0.0, n_estimators=500,
316316
presort='auto', random_state=None, subsample=1.0, verbose=0,
317317
warm_start=False)
318-
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000990s
318+
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000988s
319319

320320

321-
**Total running time of the script:** ( 0 minutes25.288 seconds)
321+
**Total running time of the script:** ( 0 minutes24.764 seconds)
322322

323323

324324

‎dev/_sources/auto_examples/applications/plot_out_of_core_classification.txt

Lines changed: 29 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -356,46 +356,46 @@ maximum
356356
Out::
357357

358358
Test set is 878 documents (108 positive)
359-
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.84s (522 docs/s)
360-
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.85s (520 docs/s)
361-
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.85s (519 docs/s)
362-
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.89s (509 docs/s)
359+
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.85s (519 docs/s)
360+
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.86s (518 docs/s)
361+
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.86s (517 docs/s)
362+
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.90s (507 docs/s)
363363

364364

365-
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 5.52s (708 docs/s)
366-
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.52s (708 docs/s)
367-
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 5.53s (707 docs/s)
368-
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.56s (703 docs/s)
365+
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 5.62s (695 docs/s)
366+
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.63s (694 docs/s)
367+
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 5.63s (694 docs/s)
368+
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.67s (689 docs/s)
369369

370370

371-
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 9.13s (747 docs/s)
372-
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 9.13s (747 docs/s)
373-
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 9.13s (746 docs/s)
374-
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 9.17s (743 docs/s)
371+
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 9.31s (732 docs/s)
372+
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 9.31s (732 docs/s)
373+
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 9.32s (732 docs/s)
374+
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 9.35s (729 docs/s)
375375

376376

377-
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in12.81s (762 docs/s)
378-
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in12.81s (761 docs/s)
379-
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in12.81s (761 docs/s)
380-
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in12.85s (759 docs/s)
377+
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in13.08s (746 docs/s)
378+
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in13.08s (745 docs/s)
379+
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in13.09s (745 docs/s)
380+
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in13.12s (743 docs/s)
381381

382382

383-
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 16.04s (728 docs/s)
384-
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 16.04s (728 docs/s)
385-
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 16.04s (728 docs/s)
386-
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 16.08s (726 docs/s)
383+
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 16.36s (713 docs/s)
384+
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 16.36s (713 docs/s)
385+
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 16.37s (713 docs/s)
386+
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 16.40s (712 docs/s)
387387

388388

389-
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in19.82s (737 docs/s)
390-
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in19.82s (737 docs/s)
391-
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in19.83s (737 docs/s)
392-
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in19.86s (736 docs/s)
389+
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in20.22s (723 docs/s)
390+
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in20.22s (723 docs/s)
391+
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in20.23s (723 docs/s)
392+
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in20.26s (721 docs/s)
393393

394394

395-
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 23.31s (744 docs/s)
396-
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 23.31s (744 docs/s)
397-
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 23.32s (744 docs/s)
398-
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 23.35s (743 docs/s)
395+
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 23.69s (732 docs/s)
396+
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 23.69s (732 docs/s)
397+
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 23.69s (732 docs/s)
398+
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 23.73s (731 docs/s)
399399

400400

401401
Plot results
@@ -526,7 +526,7 @@ Plot results
526526

527527

528528

529-
**Total running time of the script:** ( 0 minutes 25.466 seconds)
529+
**Total running time of the script:** ( 0 minutes 25.858 seconds)
530530

531531

532532

‎dev/_sources/auto_examples/applications/plot_outlier_detection_housing.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ risk of over-fitting the data.
158158

159159
plt.show()
160160

161-
**Total running time of the script:** ( 0 minutes 4.843 seconds)
161+
**Total running time of the script:** ( 0 minutes 4.648 seconds)
162162

163163

164164

‎dev/_sources/auto_examples/applications/plot_prediction_latency.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -372,10 +372,10 @@ main code
372372
benchmarking with 100 features
373373
benchmarking with 250 features
374374
benchmarking with 500 features
375-
example run in 3.84s
375+
example run in 3.93s
376376

377377

378-
**Total running time of the script:** ( 0 minutes 3.845 seconds)
378+
**Total running time of the script:** ( 0 minutes 3.928 seconds)
379379

380380

381381

‎dev/_sources/auto_examples/applications/plot_species_distribution_modeling.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ References
6565

6666
Area under the ROC curve : 0.993919
6767

68-
time elapsed: 6.95s
68+
time elapsed: 6.85s
6969

7070

7171

@@ -247,7 +247,7 @@ References
247247
plot_species_distribution()
248248
plt.show()
249249

250-
**Total running time of the script:** ( 0 minutes 6.950 seconds)
250+
**Total running time of the script:** ( 0 minutes 6.856 seconds)
251251

252252

253253

‎dev/_sources/auto_examples/applications/plot_stock_market.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -340,7 +340,7 @@ Visualization
340340

341341

342342

343-
**Total running time of the script:** ( 0 minutes11.325 seconds)
343+
**Total running time of the script:** ( 0 minutes10.822 seconds)
344344

345345

346346

‎dev/_sources/auto_examples/applications/plot_tomography_l1_reconstruction.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,7 @@ contributed to fewer projections than the central disk.
164164

165165
plt.show()
166166

167-
**Total running time of the script:** ( 0 minutes 9.715 seconds)
167+
**Total running time of the script:** ( 0 minutes 9.836 seconds)
168168

169169

170170

‎dev/_sources/auto_examples/bicluster/plot_spectral_biclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ representation of the checkerboard structure.
106106

107107
plt.show()
108108

109-
**Total running time of the script:** ( 0 minutes 0.884 seconds)
109+
**Total running time of the script:** ( 0 minutes 0.906 seconds)
110110

111111

112112

‎dev/_sources/auto_examples/bicluster/plot_spectral_coclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ the biclusters.
9393

9494
plt.show()
9595

96-
**Total running time of the script:** ( 0 minutes 0.229 seconds)
96+
**Total running time of the script:** ( 0 minutes 0.238 seconds)
9797

9898

9999

‎dev/_sources/auto_examples/calibration/plot_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,7 @@ Plot the data and the predicted probabilities
159159

160160

161161

162-
**Total running time of the script:** ( 0 minutes 0.281 seconds)
162+
**Total running time of the script:** ( 0 minutes 0.287 seconds)
163163

164164

165165

‎dev/_sources/auto_examples/calibration/plot_calibration_curve.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -214,7 +214,7 @@ but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).
214214

215215
plt.show()
216216

217-
**Total running time of the script:** ( 0 minutes 2.336 seconds)
217+
**Total running time of the script:** ( 0 minutes 2.307 seconds)
218218

219219

220220

‎dev/_sources/auto_examples/calibration/plot_calibration_multiclass.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ would have resulted in a similar decrease in log-loss.
204204

205205
plt.show()
206206

207-
**Total running time of the script:** ( 0 minutes 0.701 seconds)
207+
**Total running time of the script:** ( 0 minutes 0.712 seconds)
208208

209209

210210

‎dev/_sources/auto_examples/calibration/plot_compare_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -147,7 +147,7 @@ Plot calibration plots
147147

148148

149149

150-
**Total running time of the script:** ( 0 minutes 2.645 seconds)
150+
**Total running time of the script:** ( 0 minutes 2.736 seconds)
151151

152152

153153

‎dev/_sources/auto_examples/classification/plot_classification_probability.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ a result it can identify only the first class.
113113

114114
plt.show()
115115

116-
**Total running time of the script:** ( 0 minutes 2.545 seconds)
116+
**Total running time of the script:** ( 0 minutes 2.584 seconds)
117117

118118

119119

‎dev/_sources/auto_examples/classification/plot_classifier_comparison.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ set.
153153
plt.tight_layout()
154154
plt.show()
155155

156-
**Total running time of the script:** ( 0 minutes 8.385 seconds)
156+
**Total running time of the script:** ( 0 minutes 8.477 seconds)
157157

158158

159159

‎dev/_sources/auto_examples/classification/plot_digits_classification.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ This example is commented in the
120120

121121
plt.show()
122122

123-
**Total running time of the script:** ( 0 minutes 0.779 seconds)
123+
**Total running time of the script:** ( 0 minutes 0.795 seconds)
124124

125125

126126

‎dev/_sources/auto_examples/classification/plot_lda.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ Shows how shrinkage improves classification.
8686
shrinkage Linear Discriminant Analysis (1 discriminative feature)')
8787
plt.show()
8888

89-
**Total running time of the script:** ( 0 minutes 6.034 seconds)
89+
**Total running time of the script:** ( 0 minutes 6.227 seconds)
9090

9191

9292

‎dev/_sources/auto_examples/classification/plot_lda_qda.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -200,7 +200,7 @@ plot functions
200200

201201

202202

203-
**Total running time of the script:** ( 0 minutes 0.485 seconds)
203+
**Total running time of the script:** ( 0 minutes 0.497 seconds)
204204

205205

206206

‎dev/_sources/auto_examples/cluster/plot_adjusted_for_chance_measures.txt

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -48,19 +48,19 @@ value of k on various overlapping sub-samples of the dataset.
4848
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=100
4949
done in 0.043s
5050
Computing v_measure_score for 10 values of n_clusters and n_samples=100
51-
done in 0.063s
51+
done in 0.064s
5252
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=100
53-
done in 0.456s
53+
done in 0.469s
5454
Computing mutual_info_score for 10 values of n_clusters and n_samples=100
5555
done in 0.053s
5656
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=1000
57-
done in 0.065s
57+
done in 0.066s
5858
Computing v_measure_score for 10 values of n_clusters and n_samples=1000
5959
done in 0.083s
6060
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=1000
61-
done in 0.301s
61+
done in 0.302s
6262
Computing mutual_info_score for 10 values of n_clusters and n_samples=1000
63-
done in 0.067s
63+
done in 0.068s
6464

6565

6666

@@ -171,7 +171,7 @@ value of k on various overlapping sub-samples of the dataset.
171171
plt.legend(plots, names)
172172
plt.show()
173173

174-
**Total running time of the script:** ( 0 minutes 1.310 seconds)
174+
**Total running time of the script:** ( 0 minutes 1.326 seconds)
175175

176176

177177

‎dev/_sources/auto_examples/cluster/plot_affinity_propagation.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ Plot result
118118

119119

120120

121-
**Total running time of the script:** ( 0 minutes 0.705 seconds)
121+
**Total running time of the script:** ( 0 minutes 0.742 seconds)
122122

123123

124124

‎dev/_sources/auto_examples/cluster/plot_agglomerative_clustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -111,7 +111,7 @@ percolation instability.
111111

112112
plt.show()
113113

114-
**Total running time of the script:** ( 0 minutes 3.061 seconds)
114+
**Total running time of the script:** ( 0 minutes 3.005 seconds)
115115

116116

117117

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp