Movatterモバイル変換


[0]ホーム

URL:


Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Commitc00f69f

Browse files
committed
Pushing the docs for revision for branch: master, commit 28bcb43dd2eacfaa98f0215ec8481e0da9f8ec5d
1 parente9be350 commitc00f69f

File tree

905 files changed

+2671
-2647
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

905 files changed

+2671
-2647
lines changed
473 Bytes
Binary file not shown.
464 Bytes
Binary file not shown.

‎dev/_downloads/face_recognition.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
"execution_count":null,
2525
"cell_type":"code",
2626
"source": [
27-
"from __future__ import print_function\n\nfrom time import time\nimport logging\nimport matplotlib.pyplot as plt\n\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.model_selection import GridSearchCV\nfrom sklearn.datasets import fetch_lfw_people\nfrom sklearn.metrics import classification_report\nfrom sklearn.metrics import confusion_matrix\nfrom sklearn.decomposition importRandomizedPCA\nfrom sklearn.svm import SVC\n\n\nprint(__doc__)\n\n# Display progress logs on stdout\nlogging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')"
27+
"from __future__ import print_function\n\nfrom time import time\nimport logging\nimport matplotlib.pyplot as plt\n\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.model_selection import GridSearchCV\nfrom sklearn.datasets import fetch_lfw_people\nfrom sklearn.metrics import classification_report\nfrom sklearn.metrics import confusion_matrix\nfrom sklearn.decomposition importPCA\nfrom sklearn.svm import SVC\n\n\nprint(__doc__)\n\n# Display progress logs on stdout\nlogging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')"
2828
],
2929
"outputs": [],
3030
"metadata": {
@@ -78,7 +78,7 @@
7878
"execution_count":null,
7979
"cell_type":"code",
8080
"source": [
81-
"n_components = 150\n\nprint(\"Extracting the top %d eigenfaces from %d faces\"\n % (n_components, X_train.shape[0]))\nt0 = time()\npca =RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)\nprint(\"done in %0.3fs\" % (time() - t0))\n\neigenfaces = pca.components_.reshape((n_components, h, w))\n\nprint(\"Projecting the input data on the eigenfaces orthonormal basis\")\nt0 = time()\nX_train_pca = pca.transform(X_train)\nX_test_pca = pca.transform(X_test)\nprint(\"done in %0.3fs\" % (time() - t0))"
81+
"n_components = 150\n\nprint(\"Extracting the top %d eigenfaces from %d faces\"\n % (n_components, X_train.shape[0]))\nt0 = time()\npca =PCA(n_components=n_components, svd_solver='randomized',\n whiten=True).fit(X_train)\nprint(\"done in %0.3fs\" % (time() - t0))\n\neigenfaces = pca.components_.reshape((n_components, h, w))\n\nprint(\"Projecting the input data on the eigenfaces orthonormal basis\")\nt0 = time()\nX_train_pca = pca.transform(X_train)\nX_test_pca = pca.transform(X_test)\nprint(\"done in %0.3fs\" % (time() - t0))"
8282
],
8383
"outputs": [],
8484
"metadata": {

‎dev/_downloads/face_recognition.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@
3838
fromsklearn.datasetsimportfetch_lfw_people
3939
fromsklearn.metricsimportclassification_report
4040
fromsklearn.metricsimportconfusion_matrix
41-
fromsklearn.decompositionimportRandomizedPCA
41+
fromsklearn.decompositionimportPCA
4242
fromsklearn.svmimportSVC
4343

4444

@@ -88,7 +88,8 @@
8888
print("Extracting the top %d eigenfaces from %d faces"
8989
% (n_components,X_train.shape[0]))
9090
t0=time()
91-
pca=RandomizedPCA(n_components=n_components,whiten=True).fit(X_train)
91+
pca=PCA(n_components=n_components,svd_solver='randomized',
92+
whiten=True).fit(X_train)
9293
print("done in %0.3fs"% (time()-t0))
9394

9495
eigenfaces=pca.components_.reshape((n_components,h,w))

‎dev/_downloads/plot_faces_decomposition.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@
7171
"execution_count":null,
7272
"cell_type":"code",
7373
"source": [
74-
"estimators = [\n ('Eigenfaces - RandomizedPCA',\n decomposition.RandomizedPCA(n_components=n_components, whiten=True),\n True),\n\n ('Non-negative components - NMF',\n decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3),\n False),\n\n ('Independent components - FastICA',\n decomposition.FastICA(n_components=n_components, whiten=True),\n True),\n\n ('Sparse comp. - MiniBatchSparsePCA',\n decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8,\n n_iter=100, batch_size=3,\n random_state=rng),\n True),\n\n ('MiniBatchDictionaryLearning',\n decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,\n n_iter=50, batch_size=3,\n random_state=rng),\n True),\n\n ('Cluster centers - MiniBatchKMeans',\n MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20,\n max_iter=50, random_state=rng),\n True),\n\n ('Factor Analysis components - FA',\n decomposition.FactorAnalysis(n_components=n_components, max_iter=2),\n True),\n]"
74+
"estimators = [\n ('Eigenfaces - PCA using randomized SVD',\n decomposition.PCA(n_components=n_components, svd_solver='randomized',\n whiten=True),\n True),\n\n ('Non-negative components - NMF',\n decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3),\n False),\n\n ('Independent components - FastICA',\n decomposition.FastICA(n_components=n_components, whiten=True),\n True),\n\n ('Sparse comp. - MiniBatchSparsePCA',\n decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8,\n n_iter=100, batch_size=3,\n random_state=rng),\n True),\n\n ('MiniBatchDictionaryLearning',\n decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,\n n_iter=50, batch_size=3,\n random_state=rng),\n True),\n\n ('Cluster centers - MiniBatchKMeans',\n MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20,\n max_iter=50, random_state=rng),\n True),\n\n ('Factor Analysis components - FA',\n decomposition.FactorAnalysis(n_components=n_components, max_iter=2),\n True),\n]"
7575
],
7676
"outputs": [],
7777
"metadata": {
@@ -107,7 +107,7 @@
107107
"execution_count":null,
108108
"cell_type":"code",
109109
"source": [
110-
"for name, estimator, center in estimators:\n print(\"Extracting the top %d %s...\" % (n_components, name))\n t0 = time()\n data = faces\n if center:\n data = faces_centered\n estimator.fit(data)\n train_time = (time() - t0)\n print(\"done in %0.3fs\" % train_time)\n if hasattr(estimator, 'cluster_centers_'):\n components_ = estimator.cluster_centers_\n else:\n components_ = estimator.components_\n if hasattr(estimator, 'noise_variance_'):\n plot_gallery(\"Pixelwise variance\",\n estimator.noise_variance_.reshape(1, -1), n_col=1,\n n_row=1)\n plot_gallery('%s - Train time %.1fs' % (name, train_time),\n components_[:n_components])\n\nplt.show()"
110+
"for name, estimator, center in estimators:\n print(\"Extracting the top %d %s...\" % (n_components, name))\n t0 = time()\n data = faces\n if center:\n data = faces_centered\n estimator.fit(data)\n train_time = (time() - t0)\n print(\"done in %0.3fs\" % train_time)\n if hasattr(estimator, 'cluster_centers_'):\n components_ = estimator.cluster_centers_\n else:\n components_ = estimator.components_\n\n # Plot an image representing the pixelwise variance provided by the\n # estimator e.g its noise_variance_ attribute. The Eigenfaces estimator,\n # via the PCA decomposition, also provides a scalar noise_variance_\n # (the mean of pixelwise variance) that cannot be displayed as an image\n # so we skip it.\n if (hasattr(estimator, 'noise_variance_') and\n estimator.noise_variance_.ndim > 0): # Skip the Eigenfaces case\n plot_gallery(\"Pixelwise variance\",\n estimator.noise_variance_.reshape(1, -1), n_col=1,\n n_row=1)\n plot_gallery('%s - Train time %.1fs' % (name, train_time),\n components_[:n_components])\n\nplt.show()"
111111
],
112112
"outputs": [],
113113
"metadata": {

‎dev/_downloads/plot_faces_decomposition.py

Lines changed: 11 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -66,8 +66,9 @@ def plot_gallery(title, images, n_col=n_col, n_row=n_row):
6666
# List of the different estimators, whether to center and transpose the
6767
# problem, and whether the transformer uses the clustering API.
6868
estimators= [
69-
('Eigenfaces - RandomizedPCA',
70-
decomposition.RandomizedPCA(n_components=n_components,whiten=True),
69+
('Eigenfaces - PCA using randomized SVD',
70+
decomposition.PCA(n_components=n_components,svd_solver='randomized',
71+
whiten=True),
7172
True),
7273

7374
('Non-negative components - NMF',
@@ -122,7 +123,14 @@ def plot_gallery(title, images, n_col=n_col, n_row=n_row):
122123
components_=estimator.cluster_centers_
123124
else:
124125
components_=estimator.components_
125-
ifhasattr(estimator,'noise_variance_'):
126+
127+
# Plot an image representing the pixelwise variance provided by the
128+
# estimator e.g its noise_variance_ attribute. The Eigenfaces estimator,
129+
# via the PCA decomposition, also provides a scalar noise_variance_
130+
# (the mean of pixelwise variance) that cannot be displayed as an image
131+
# so we skip it.
132+
if (hasattr(estimator,'noise_variance_')and
133+
estimator.noise_variance_.ndim>0):# Skip the Eigenfaces case
126134
plot_gallery("Pixelwise variance",
127135
estimator.noise_variance_.reshape(1,-1),n_col=1,
128136
n_row=1)
-441 Bytes
90 Bytes
-49 Bytes
-178 Bytes
-178 Bytes
-169 Bytes
-169 Bytes
112 Bytes
112 Bytes
129 Bytes
-362 Bytes
-368 Bytes
-125 Bytes
-180 Bytes
-180 Bytes
-138 Bytes
-138 Bytes
-76 Bytes
-76 Bytes
-67 Bytes
-67 Bytes
-272 Bytes
-272 Bytes
-166 Bytes
-36 Bytes
282 Bytes
282 Bytes
707 Bytes
-80 Bytes
-121 Bytes
-22 Bytes
522 Bytes
522 Bytes
-190 Bytes
59 Bytes

‎dev/_sources/auto_examples/applications/face_recognition.txt

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ Gerhard Schroeder 0.76 0.76 0.76 25
4646
from sklearn.datasets import fetch_lfw_people
4747
from sklearn.metrics import classification_report
4848
from sklearn.metrics import confusion_matrix
49-
from sklearn.decomposition importRandomizedPCA
49+
from sklearn.decomposition importPCA
5050
from sklearn.svm import SVC
5151

5252

@@ -111,7 +111,8 @@ dataset): unsupervised feature extraction / dimensionality reduction
111111
print("Extracting the top %d eigenfaces from %d faces"
112112
% (n_components, X_train.shape[0]))
113113
t0 = time()
114-
pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)
114+
pca = PCA(n_components=n_components, svd_solver='randomized',
115+
whiten=True).fit(X_train)
115116
print("done in %0.3fs" % (time() - t0))
116117

117118
eigenfaces = pca.components_.reshape((n_components, h, w))

‎dev/_sources/auto_examples/applications/plot_model_complexity_influence.txt

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -226,69 +226,69 @@ main code
226226
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
227227
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
228228
verbose=0, warm_start=False)
229-
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.026798s
229+
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.027413s
230230

231231
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
232232
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
233233
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
234234
power_t=0.5, random_state=None, shuffle=True, verbose=0,
235235
warm_start=False)
236-
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.021841s
236+
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.020356s
237237

238238
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
239239
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
240240
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
241241
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
242242
verbose=0, warm_start=False)
243-
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.017555s
243+
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.016345s
244244

245245
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
246246
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
247247
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
248248
power_t=0.5, random_state=None, shuffle=True, verbose=0,
249249
warm_start=False)
250-
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.014737s
250+
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.014995s
251251

252252
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
253253
kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
254254
verbose=False)
255-
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000369s
255+
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000366s
256256

257257
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
258258
kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
259259
verbose=False)
260-
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000655s
260+
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000648s
261261

262262
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
263263
kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
264264
verbose=False)
265-
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001119s
265+
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001113s
266266

267267
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
268268
kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
269269
verbose=False)
270-
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001580s
270+
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001572s
271271

272272
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
273273
kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
274274
verbose=False)
275-
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001831s
275+
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001808s
276276

277277
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
278278
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
279279
max_leaf_nodes=None, min_impurity_split=1e-07,
280280
min_samples_leaf=1, min_samples_split=2,
281281
min_weight_fraction_leaf=0.0, n_estimators=10, presort='auto',
282282
random_state=None, subsample=1.0, verbose=0, warm_start=False)
283-
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000119s
283+
Complexity: 10 | MSE: 28.9793 | Pred. Time: 0.000114s
284284

285285
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
286286
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
287287
max_leaf_nodes=None, min_impurity_split=1e-07,
288288
min_samples_leaf=1, min_samples_split=2,
289289
min_weight_fraction_leaf=0.0, n_estimators=50, presort='auto',
290290
random_state=None, subsample=1.0, verbose=0, warm_start=False)
291-
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000197s
291+
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000191s
292292

293293
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
294294
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -297,7 +297,7 @@ main code
297297
min_weight_fraction_leaf=0.0, n_estimators=100,
298298
presort='auto', random_state=None, subsample=1.0, verbose=0,
299299
warm_start=False)
300-
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000277s
300+
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000271s
301301

302302
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
303303
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -306,7 +306,7 @@ main code
306306
min_weight_fraction_leaf=0.0, n_estimators=200,
307307
presort='auto', random_state=None, subsample=1.0, verbose=0,
308308
warm_start=False)
309-
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000430s
309+
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000425s
310310

311311
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
312312
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -315,10 +315,10 @@ main code
315315
min_weight_fraction_leaf=0.0, n_estimators=500,
316316
presort='auto', random_state=None, subsample=1.0, verbose=0,
317317
warm_start=False)
318-
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000936s
318+
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000922s
319319

320320

321-
**Total running time of the script:** ( 0 minutes 25.085 seconds)
321+
**Total running time of the script:** ( 0 minutes 25.481 seconds)
322322

323323

324324

0 commit comments

Comments
 (0)

[8]ページ先頭

©2009-2025 Movatter.jp