- Notifications
You must be signed in to change notification settings - Fork9
Japanese CLIP by rinna Co., Ltd.
License
NotificationsYou must be signed in to change notification settings
rinnakk/japanese-clip
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This repository includes codes for JapaneseCLIP (Contrastive Language-Image Pre-Training) variants byrinna Co., Ltd.
Table of Contents |
---|
News |
Pretrained Models |
Usage |
Citation |
License |
v0.2.0 was released!
- Both CLIP and CLOOB models were upgraded! Now,
rinna/japanese-cloob-vit-b-16
achieves 54.64. - Released our Japanese prompt templates and an example code (see
scripts/example.py
) for zero-shot ImageNet classification. Those templates were cleaned for Japanese based on theOpenAI 80 templates. - Changed the citation
Model Name | TOP1* | TOP5* |
---|---|---|
rinna/japanese-cloob-vit-b-16 | 54.64 | 72.86 |
rinna/japanese-clip-vit-b-16 | 50.69 | 72.35 |
sonoisa/clip-vit-b-32-japanese-v1 | 38.88 | 60.71 |
multilingual-CLIP | 14.36 | 27.28 |
*Zero-shot ImageNet validation set top-k accuracy.
- Install package
$ pip install git+https://github.com/rinnakk/japanese-clip.git
- Run
fromPILimportImageimporttorchimportjapanese_clipasja_clipdevice="cuda"iftorch.cuda.is_available()else"cpu"# ja_clip.available_models()# ['rinna/japanese-clip-vit-b-16', 'rinna/japanese-cloob-vit-b-16']# If you want v0.1.0 models, set `revision='v0.1.0'`model,preprocess=ja_clip.load("rinna/japanese-clip-vit-b-16",cache_dir="/tmp/japanese_clip",device=device)tokenizer=ja_clip.load_tokenizer()image=preprocess(Image.open("./data/dog.jpeg")).unsqueeze(0).to(device)encodings=ja_clip.tokenize(texts=["犬","猫","象"],max_seq_len=77,device=device,tokenizer=tokenizer,# this is optional. if you don't pass, load tokenizer each time)withtorch.no_grad():image_features=model.get_image_features(image)text_features=model.get_text_features(**encodings)text_probs= (100.0*image_features @text_features.T).softmax(dim=-1)print("Label probs:",text_probs)# prints: [[1.0, 0.0, 0.0]]
To cite this repository:
@inproceedings{japanese-clip, author = {シーン 誠, 趙 天雨, 沢田 慶}, title = {日本語における言語画像事前学習モデルの構築と公開}, booktitle= {The 25th Meeting on Image Recognition and Understanding}, year = 2022, month = July,}
About
Japanese CLIP by rinna Co., Ltd.
Topics
Resources
License
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
No packages published
Uh oh!
There was an error while loading.Please reload this page.