- Notifications
You must be signed in to change notification settings - Fork1
R package for ICA-based Matrix/Tensor Decomposition
License
Unknown, MIT licenses found
Licenses found
Unknown
LICENSEMIT
LICENSE.mdNotificationsYou must be signed in to change notification settings
rikenbit/iTensor
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
ICA-based Matrix/Tensor Decomposition
git clone https://github.com/rikenbit/iTensor/R CMD INSTALL iTensoror type the code below in the R console window
library(devtools)devtools::install_github("rikenbit/iTensor")- ICA
- InfoMax
- Bell, A. J. et al., An information-maximization approach to blind separation and blind deconvolution. Neural computation, 7(6), 1129-1159, 1995
- Amari, S. et al., A new learning algorithm for blind signal separation. NIPS 1995, 1995
- ExtInfoMax
- Lee, T. W., et al., Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural computation, 11(2), 417-441, 1999
- FastICA
- Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on Neural Networks, 10(3), 626-634, 1999
- JADE
- Cardoso, J. F. et al., Blind beamforming for non-gaussian signals, IEE Proceedings F, 140(6), 362-370, 1993
- AuxICA1/2
- Ono, N. et al., Auxiliary-Function-Based Independent Component Analysis for Super-Gaussian Sources, Lecture Notes in Computer Science, 6365, 165-172, 2010
- IPCA
- Yao, F. et al., Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets, BMC Bioinformatics, 13(24), 2012
- SIMBEC
- Cruces, S. et al., Criteria for the simultaneous blind extraction of arbitrary groups of sources, International Conference on ICA and BSS, 740-745, 2001
- AMUSE
- Tong, L. et al., Indeterminacy and identifiability of blind identification, IEEE Transactions on Circuits and Systems, 38(5), 499-509, 1991
- SOBI
- Belouchrani, A. et al., A blind source separation technique using second-order statistics, IEEE Transactions on Signal Processing, 45(2), 434-444, 1997
- FOBI
- Cardoso, J.-F. et al., Source separation using higher order moments, International Conference on Acoustics, Speech, and Signal Processing, 4, 2109-2112, 1989
- ProDenICA
- Hastie, T. et al., Independent Components Analysis through Product Density Estimation, NIPS 2002, 2002
- RICA
- Le, Q. et al., ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning, NIPS 2011, 2011
- InfoMax
- GroupICA
- Calhourn V. D. et al, A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage. 45(1 Suppl), S163-72, 2009
- Pfister, N. et al., groupICA: Independent component analysis for grouped data. arXiv, 2018
- MICA
- Akaho, S. et al., MICA: Multimodal independent component analysis. IJCNN'99, 2, 927-932, 1999
- MultilinearICA
- Vasilescu, M. A. O. et al., Multilinear Independent Component Analysis, IEEE CVPR 2005, 2005
- CorrIndex
- Sobhani, E. et al., CorrIndex: a permutation invariant performance index, Signal Processing, 195, 108457, 2022
If you have suggestions for howiTensor could be improved, or want to report a bug, open an issue! We'd love all and any contributions.
For more, check out theContributing Guide.
- Koki Tsuyuzaki
About
R package for ICA-based Matrix/Tensor Decomposition
Resources
License
Unknown, MIT licenses found
Licenses found
Unknown
LICENSEMIT
LICENSE.mdCode of conduct
Contributing
Uh oh!
There was an error while loading.Please reload this page.
Stars
Watchers
Forks
Packages0
Uh oh!
There was an error while loading.Please reload this page.
Uh oh!
There was an error while loading.Please reload this page.
Contributors3
Uh oh!
There was an error while loading.Please reload this page.